Refine Your Search

Topic

Affiliation

Search Results

Technical Paper

The Influence of an On Line Oil Recycler on Oil Quality from a Bus in Service Using Synthetic Oil

2001-05-07
2001-01-1969
A method of cleaning lubricating oil on line was investigated using a one micron bypass particulate filter followed by an infra-red heater, to remove water, dissolved gases and light diesel fractions in the oil. The impact of this oil recycler on oil quality was studied using synthetic oil in an on-road bus test. The bus was of Euro-1 emissions standard and equipped with a Cummins 6 cylinder 8.3 litre turbo-charged inter-cooled DI engine. Comparisons tests were undertaken with and without the oil recycler for about 28,000 miles. Oil samples were analysed about every 2000 miles. The results showed that the on line oil recycler achieved significant improvements in the oil quality. With the recycler, the TBN depletion rate was reduced by 52%, the TAN increase rate was reduced by 27% and the carbon accumulation rate in the oil was reduced by 42%. The fuel dilution was reduced by the recycler.
Technical Paper

Oil Quality with Oil Age in an IDI Diesel Passenger Car Using an On Line Lubricating Oil Recycler Under Real World Driving

2001-05-07
2001-01-1898
A method of cleaning lubricating oil on line was investigated using a fine 1 micron bypass particulate filter, followed by an infra-red heater to remove water and light diesel fractions in the oil. A Ford 1.8 litre IDI diesel passenger car was investigated under real world driving conditions. Comparison was made with the oil quality without the recycler. All the tests were carried out on the same vehicle over 7000 miles with and without the recycler. The results showed that the on line oil recycler cleaning system reduced the rate of reduction of TBN and the rate of increase of TAN by 54% and 50% respectively. The reduction in the rate of carbon accumulation in the oil was 42%. There was also a reduction in fuel dilution. All the wear metals in the oil were greatly reduced by the recycler, the iron was reduced by 76%, the lead was reduced by 85% and the aluminum was totally removed.
Technical Paper

The Influence of an Oil Recycler on Emissions with Oil Age for a Refuse Truck Using in Service Testing

2001-03-05
2001-01-0623
A method of cleaning lubricating oil on line was investigated using a fine bypass particulate filter followed by an infra red heater. Two bypass filter sizes of 6 and 1 micron were investigated, both filter sizes were effective but the one micron filter had the greatest benefit. This was tested on two nominally identical EURO 1 emissions compliance refuse trucks, fitted with Perkins Phazer 210Ti 6 litre turbocharged intercooled engines and coded as RT320 and RT321. These vehicles had emissions characteristics that were significantly different, in spite of their similar age and total mileage. RT321 showed an apparent heavier black smoke than RT320. Comparison was made with the emissions on the same vehicles and engines with and without the on-line bypass oil recycler. Engine exhaust emissions were measured about every 400 miles. Both vehicles started the test with an oil drain and fresh lubricating oil.
Technical Paper

Improvements in Lubricating Oil Quality by an On Line Oil Recycler for a Refuse Truck Using in Service Testing

2001-03-05
2001-01-0699
A method of cleaning lubricating oil on line was investigated using a fine bypass particulate filter followed by an infra red heater. Two bypass filter sizes of 6 and 1 micron were investigated, both filter sizes were effective but the one micron filter had the greatest benefit. This was tested on two nominally identical EURO 1 emissions compliance refuse trucks, fitted with Perkins Phazer 210Ti 6 litre turbocharged intercooled engines and coded as RT320 and RT321. These vehicles had lubricating oil deterioration and emissions characteristics that were significantly different, in spite of their similar age and total mileage. RT321 showed an apparent heavier black smoke than RT320. Comparison was made with the oil quality and fuel and lubricating oil consumption on the same vehicles and engines with and without the on-line bypass oil recycler. Engine oils were sampled and analysed about every 400 miles. Both vehicles started the test with an oil drain and fresh lubricating oil.
Technical Paper

A Comparison of Exhaust Pipe, Dilution Tunnel and Roadside Diesel Particulate SOF and Gaseous Hydrocarbon Emissions

1988-02-01
880351
The solvent organic fraction (SOF) of particulates from the exhaust pipe of a diesel engine, a dilution tunnel and a roadside sample are compared. Three different techniques of SOF analysis are also compared, vacuum oven, solvent extraction and pyroprobe/GC. Gaseous hydrocarbons and the methane contribution were measured in the exhaust pipe throughout the speed and load range of the engine at 185 C and 2 C. The unburnt hydrocarbons decreased with air/fuel ratio for all speeds and there was an overall decrease in emissions with increasing speed. The differential temperature technique showed the maximum mass of hydrocarbon which could condense from the gas phase onto the particulate as the SOF. The method compared well with the actual SOF of the tunnel particulate.
Technical Paper

The Role of Lubricating Oil in Diesel Particulate and Particulate PAH Emissions

1987-11-01
872084
The role of lubricating oil in total particulate emmissions and in terms of polycyclic aromatic compounds (PAC) associated with the solvent organic fraction (SOF) of the particulate are investigated. Analysis of unused lubricating oil shows negligible concentrations of PAC. Used lubricating oil from a modified Perkins 4.236 Diesel engine, showed significant concentrations of PAC had accumulated in the oil in the form of PAC from unburnt fuel. Analysis of the oil was by gas chromatography using simultaneous parallel triple detection, allowing analysis of polycyclic aromatic hydrocarbons (PAH), nitrogen containing PAH (PANH) and sulphur containing PAH (PASH). Motoring the engine in the absence of fuel enabled the contribution of lubricating oil to the exhaust particulate and particulate PAC emission to be determined.
Technical Paper

The Aging of Lubricating Oil, The Influence of Unburnt Fuel and Particulate SOF Contamination

1987-11-01
872085
The role of lubricating oil as a sink for polycyclic aromatic compounds (PAC) and alkanes derived from unburnt fuel is described for two different oils used in two different DI diesel engines. The diesel engines used were, an older technology Petter AV1 single cylinder mine pumping engine and a Perkins 4.236 current technology engine. Analysis of the oil was by gas chromatography using simultaneous parallel triple detection, allowing analysis of hydrocarbons and nitrogen and sulphur containing compounds. Analysis of unused lubricating oil showed negligible concentrations of PAC and low molecular weight alkanes (< C20). The oil from each engine was analysed periodically during use and showed a rapid and significant accumulation of hydrocarbons which reached significant concentrations after only 10 hours use. The older technology engine showed a much higher accumulation rate.
Technical Paper

The Influence Of Diesel Fuel Composition On Particulate PAH Emissions

1989-09-01
892079
The objective was to investigate PAH emissions in diesel particulates using two diesel fuels with different PAH content. Class A2 diesel from two different refinery sources were analysed for PAH and there were significant difference in the concentration of the 3 and 4 ring PAH of importance in particulate PAH emissions. One fuel had at least 20 times the benzo[a]pyrene (BaP) of the other. A mass balance between the fuel PAH input to the engine and the particulate PAH emissions was carried out. A similar mass balance was also carried out between the equivalent boiling point n-alkane fuel and particulate SOF, which determined how that distillation fraction of the fuel behaved in the engine. One of the fuels had a higher survivability of high MW n-alkanes and this was also reflected in the PAH emissions. The fuel with high BaP had BaP emissions entirely consistent with an unburned fuel source.
Technical Paper

Diesel Fuel Dilution and Particulate Absorption Contamination in Used Lubricating Oil

1989-09-01
892080
Lubricating oil taken from the sump of a direct injection diesel engine has been analysed for the concentration of hydrocarbon contamination over a period of time. The oil was filtered and the sediment SOF analysed together with the filtrate. The results showed that there was an increase in the contamination in the used oil for both the filtrate and sediment hydrocarbon contamination. The carbon number distribution of the filtrate and sediment SOF were different. The filtrate representing contamination of the oil by fuel dilution and the sediment SOF contamination by particulates adsorbed into the oil in the combustion chamber. The highest contribution to the hydrocarbon contamination of the oil was from the filtrate in the early ageing period with an increasing contribution from the SOF of the sediment.
Technical Paper

The influence of PAH contamination of Lubricating Oil on Diesel Particulate PAH Emissions

1989-02-01
890825
The influence of contamination of lubricating oil on the emissions of total particulate, particulate polycyclic aromatic hydrocarbons (PAH) and unburnt fuel and gaseous emissions have been investigated for a modified Perkins 4.236 D.I. diesel engine. The emissions during fuel firing and motoring in the absence of fuel are compared. The results showed that the exhaust particulate during both firing and motoring were not affected by lubricating oil contamination. Emission of PAH during fuel firing and motoring increase with oil contamination which in turn reflects the build up of PAH with oil age. Some of the particulate PAH are biologically active. The contribution of oil derived PAH increase with age. Comparison of the gaseous emissions during fuel firing and during motoring also showed an increase in UHC with age of lubricating oil.
Technical Paper

Driver Variability Influences on Real World Emissions at a Road Junction using a PEMS

2010-04-12
2010-01-1072
A Euro 2 SI (Spark Ignition) Mondeo was investigated for a fully warmed-up vehicle on a simple urban driving loop. Emissions were monitored using an on-board Horiba OBS (On-Board emission measurement System) 1300. 10 laps of a 0.6 km loop were driven by each driver and this involved 4 junctions per lap. Statistical analysis of 20 drivers was made over 27 repeat junction events for each driver. The statistical analysis of the data showed that for all drivers the CO₂, speed and throttle position were more typical Gaussian in their distribution. NOx and CO on the other hand were lognormal in their distribution. Acceleration, positive and negative throttle jerks (rate of change of throttle angle) were borderline Gaussian. HC (Hydrocarbon) emissions were not Gaussian and there was some evidence for a gamma distribution and for a lognormal distribution. Comparison of mean HC emissions between the drivers was therefore not reliable.
Technical Paper

Comparison of Real World Emissions in Urban Driving for Euro 1-4 Vehicles Using a PEMS

2009-04-20
2009-01-0941
An on-board emission measurement system (PEMS), the Horiba OBS 1300, was installed in Euro 1-4 SI cars of the same model to investigate the impact of vehicle technology on exhaust emissions, under urban driving conditions with a fully warmed-up catalyst. A typical urban driving loop cycle was used with no traffic loading so that driver behavior without the influence of other traffic could be investigated. The results showed that under real world driving conditions the NOx emissions exceeded the legislated values and only at cruise was the NOx emissions below the legislated value. The higher NOx emissions during real-world driving have implications for higher urban Ozone formation. With the exception of the old EURO1 vehicle, HC and CO emissions were under control for all the vehicles, as these are dominated by cold start issues, which were not included in this investigation.
Technical Paper

Impact of Ambient Temperatures on VOC Emissions and OFP during Cold Start for SI Car Real World Urban Driving

2009-06-15
2009-01-1865
New EU environmental law requires 31 ozone precursor VOCs (Volatile Organic Compounds) to be measured for urban air quality control. In this study, 23 out of the 31 ozone precursor VOCs were measured at a rate of 0.5 HZ by an in-vehicle FTIR (Fourier Transform InfraRed) emission measurement system along with 15 other VOCs. The vehicle used was a EURO2 emission compliant SI car. The test vehicle was driven under real world urban driving conditions on the same route by the same driver on different days at different ambient temperatures. All the journeys were started from cold. The VOC emissions and OFP (Ozone Formation Potential) as a function of engine warm up and ambient temperatures during cold start were investigated. The exhaust temperatures were measured along with the exhaust emissions. The temperature and duration of light off of the catalyst for VOCs was monitored.
Technical Paper

Investigation of Aldehyde and VOC Emissions during Cold Start and Hot Engine Operations using 100% Biofuels for a DI Engine

2009-04-20
2009-01-1515
Aldehydes and other Volatile Organic compounds (VOC) are assessed under cold start and steady state conditions using a Perkins Phaser 6 litre diesel engine. A comparison is made between petroleum diesel fuel (PD), 100% biodiesel (WME) and 100% rapeseed oil (RSO). A Temet FTIR was used to determine aldehydes including formaldehyde, acetaldehyde and acrolein. The diesel engine was cold started at room temperature using a step start up procedure that kept the power output constant at two steady state conditions: 23kW and 47kW. Very little difference was observed between petroleum diesel and biodiesel aldehyde emissions at either steady state conditions or during cold start. There was, however, an increase in aldehydes at steady state for rapeseed oil, particularly at low load, but only for from ∼10ppm to 25 ppm for formaldehyde (i.e. 0.12g/kWh to 0.37g/kWh). During cold start conditions, the emissions were significantly higher for rapeseed oil than for petroleum diesel.
Technical Paper

The Influence of Fuel Pre-Heating on Combustion and Emissions with 100% Rapeseed Oil for a DI Diesel Engine

2009-04-20
2009-01-0486
This work investigates the heating of unprocessed rapeseed oil as a means to improve fuel delivery by reducing the fuel viscosity, and to assess the effects on combustion performance. The results show that a simple low power heater with thermal insulation around the fuel line and pump can effectively raise the operational fuel temperature at delivery to the pump. The results show that even with a moderate temperature increase, the fuel flow limitations with rapeseed oil are reduced and the legislated gaseous emissions are reduced at steady state conditions. As one of the main reasons for the conversion of straight oils to the methyl ester, ie biodiesel, is to reduce the viscosity, this work shows that heating the oil can have a similar effect. An emissions benefit is observed with biodiesel compared to rapeseed oil but this is not large. There is also a significant greenhouse gas and cost benefit associated with straight vegetable oils.
Technical Paper

Diesel Cold Start into Congested Real World Traffic: Comparison of Diesel and B100 for Ozone Forming Potential

2013-04-08
2013-01-1145
EU environmental law requires 30 ozone precursor volatile organic compounds (VOCs) to be measured for urban air quality control. In this study, 28 ozone precursor VOCs were measured at a rate of 0.5 Hz by an in-vehicle FTIR emission measurement system along with other VOCs. The vehicle used was a Euro 3 emission compliant diesel van. The test vehicle was started from a cold ambient temperature soak and driven under real world urban driving conditions. Diesel and B100 (100% Biodiesel) were compared using the same repeat journeys. The VOC emissions and OFP (ozone formation potential) were investigated as a function of engine warm up and ambient temperatures during cold start. The exhaust temperatures were measured along with the exhaust emissions. The temperature and duration of light off of the catalyst for VOC were monitored and showed a cold start period to catalyst light off that was considerably longer than would occur on the NEDC (New European Driving Cycle).
Technical Paper

Real World Diesel Engine Greenhouse Gas Emissions for Diesel Fuel and B100

2013-04-08
2013-01-1514
The transport sector is one of the major contributors to greenhouse gas emissions. This study investigated three greenhouse gases emitted from road transport using a probe vehicle: CO₂, N₂O and CH₄ emissions as a function temperature. It should be highlighted that methane is a greenhouse gas that similarly to carbon dioxide contributes to global warming and climate change. An oxidation catalyst was used to investigate CO₂, N₂O and CH₄ GHG emissions over a real-world driving cycle that included urban congested traffic and extra-urban driving conditions. The results were determined under hot start conditions, but in congested traffic the catalyst cooled below its light-off temperature and this resulted in considerable N₂O emissions as the oxidation catalyst temperature was in the N₂O formation band. This showed higher N₂O during hot start than for diesel fuel and B100 were compared. The B100 fuel was Fatty Acid Methyl Ester (FAME), derived from waste cooking oil, which was mainly RME.
Technical Paper

Reduction of Exhaust Emissions by a Synthetic Lubricating Oil with Higher Viscosity Grade and Optimized Additive Package for a Heavy Duty DI Diesel Engine Test

2008-10-06
2008-01-2489
A 10W-50 G4 synthetic lubricating oil (EULUBE oil) was tested on a heavy duty DI diesel engine under two steady state conditions. The exhaust emissions were measured and compared to a 10W-30 CF semi-synthetic lubricating oil. The EULUBE oil contained the friction reduction additive to improve the fuel economy. The engine used was a 6 cylinder, turbocharged, intercooled Perkins Phaser Engine, with emission compliance of EURO 2, fitted with an oxidation catalyst. The exhaust samples were taken both upstream and downstream of the catalyst. Gaseous and particulates emissions were measured. Particulate size distribution was measured using ELPI and SMPS. The particulate samples were analysed for VOF, carbon and ash. A MEXA7100 gas analysis system was used for legislated gas analysis such as CO, CO2, NOx and total hydrocarbons. The results showed a significant reduction by synthetic lubricating oil in gaseous hydrocarbon emissions, total particulate mass, particulate carbon and ash.
Technical Paper

Chassis Dynamometer Evaluation of On-board Exhaust Emission Measurement System Performance in SI Car under Transient Operating Conditions

2008-06-23
2008-01-1826
A commercial on-board exhaust emissions measurement system, the Horiba OBS-1300, was evaluated in a series of chassis dynamometer test trails. A EURO 1 (petrol) SI passenger car, operated under normal and rich combustion conditions, and a combination of static and transient sampling provided a wide range of measurement conditions for the evaluation exercise. The chassis dynamometer facility incorporated an ‘industry standard’ measurement system comprising MEXA-7400 gas analyzer and CVS bag sampling system which were used as ‘benchmarks’ for the evaluation of both OBS-1300 component (exhaust flow meter and species analyzer) measurements and ‘daughter’ emission measurements for regulated gas-phase species (CO, CO2, HC and NOx). Trials demonstrated very good to reasonable agreement for exhaust flow and CO, CO2 and HC concentration measurements during static (R2 ≈ 0.97, 0.99, 0.99 and 0.97, respectively) and transient (R2 ≈ 0.88, 0.96, 0.95 and 0.86, respectively) testing.
Technical Paper

The Influence of Lubricating Oil Age on Oil Quality and Emissions from IDI Passenger Car Diesels

1999-03-01
1999-01-1135
Two Ford IDI passenger car diesel engines, 1.6 and 1.8 litres, were tested over a 100 hour lube oil ageing period with engine out emission samples every 15 hours. The 1.6 litre engine was tested with 5% EGR and the 1.8 litre engine with 15% EGR. Comparison was also made with previous work using an older Petter AA1 engine. The three engines had different dependencies of particulate emissions on the lube oil age. The 1.6 litre engine increased the particulates from 1 to 2.5 g/kg of fuel, whereas the 1.8 litre engine first decreased the particulate emissions from 3 to 1 g/kg over 50 hours of oil age and then they increased to 2 g/kg at 100 hours. This was similar to the previous work on the Petter AA1 engine, where the emissions first decreased and then increased as the oil aged. For the 1.8 litre engine the lube oil fraction of the VOF was high with fresh oil and decreased with time for the first 50 hours and then remained steady.
X