Refine Your Search

Search Results

Viewing 1 to 8 of 8
Technical Paper

A Numerical Simulation of Ignition Delay in Diesel Engines

1998-02-23
980501
To investigate the ignition process in a diesel spray, the ignition in a transient fuel spray is analyzed numerically by a simple quasi-steady spray model coupled with the Shell kinetics model at various operating conditions and validity of this model is assessed by a comparison with existing experimental data. The calculated results indicate that the competition between the heat absorption of fuel and the hot air entrainment determines the equivalence ratio of mixtures favorable for the ignition to occur in the shortest time.
Technical Paper

Fast Burning and Reduced Soot Formation via Ultra-High Pressure Diesel Fuel Injection

1991-02-01
910225
The relation between the characteristics of a non-evaporating spray and those of a corresponding frame achieved in a rapid compression machine was investigated experimentally. The fuel injection pressure was changed in a range of 55 to 260 MPa and the other injection parameters such as orifice diameter and injection duration were changed systematically. The characteristics of the non-evaporating spray such as the Sauter mean diameter and the mean excess air ratio of the spray were measured by an image analysis technique. The time required for a pressure rise due to combustion was taken as an index to characterize the flame. It was concluded that the mean excess air ratio of a spray is the major factor which controls the burning rate and that the high injection pressure is effective in shortening the combustion duration and reducing soot formation.
Technical Paper

2-D Imaging of Fuel Vapor Concentration in a Diesel Spray via Exciplex-Based Fluorescence Technique

1993-10-01
932652
To measure the fuel vapor concentration in an unsteady evaporating spray injected into nitrogen atmosphere, the exciplex-forming method, which produces spectrally separated fluorescence from the liquid and vapor phase, was applied in this study. Two experiments were conducted to investigate the qualitative and quantitative applicability of the technique in a high temperature and high pressure atmosphere during the fuel injection period. One is to examine the thermal decomposition of TMPD dopant at a high temperature and a high pressure nitrogen atmosphere during a short period of time. The other is to calibrate the relationship between fluorescence intensity and vapor concentration of TMPD at different vapor temperatures. And then, the qualitative measurement of fuel vapor concentration distributions in diesel sprays was made by applying the technique.
Technical Paper

Pyrene-LIF Thermometry of the Early Soot Formation Region in a Diesel Spray Flame

2005-09-11
2005-24-006
In order to investigate early soot formation process in diesel combustion, spectral analysis and optical thermometry of early soot formation region in a transient spray flame under diesel-like conditions (Pg2.8 MPa, Tg620-820K) was attempted via laser-induced fluorescence (LIF) from pyrene (C16H10) doped in the fuel. Pyrene is known to exhibit a temperature\-dependent variation of LIF spectrum; the ratio of S2/S1 fluorescence yields, from the lowest excited singlet state S1 and the second excited singlet state S2, depends on temperature. In the present study, pyrene was doped (1%wt) in a model diesel fuel (0-solvent) and the variation of LIF spectra from the pyrene in the spray flame in a rapid compression machine were examined at different ambient temperatures, ambient oxygen concentrations, measurement positions and timings after start of fuel injection.
Technical Paper

A Study on Ignition Delay of Diesel Fuel Spray via Numerical Simulation

2000-06-19
2000-01-1892
To investigate the ignition process in a diesel spray, the ignition in a transient fuel spray is analyzed numerically by a discrete droplet spray model (DDM) coupled with the Shell kinetics model at various operating conditions. Predicted results show that the fuel mixture injected at the start of injection, which travels along midway between the spray axis and the spray periphery, contributes heavily to the first ignition in a spray. The equivalence ratio and temperature of the first ignited mixture are kept nearly constant until the start of hot ignition. The temperature of the first ignited mixture is kept at a constant value of higher temperature than the thermodynamic equilibrium temperature of the mixture before the hot ignition starts. The equivalence ratio of the first ignited mixture is around 1.6 at initial gas temperatures between 750 K and 850 K.
Technical Paper

Two–Dimensional Imaging of Formaldehyde Formed During the Ignition Process of a Diesel Fuel Spray

2000-03-06
2000-01-0236
The time of, and location where ignition first occurs in a diesel fuel spray were investigated in a rapid compression machine (RCM) using the two–dimensional techniques of silicone oil particle scattering imaging (SSI), and the planar laser induced fluorescence (LIF) of formaldehyde. Formaldehyde has been hypothesized to be one of the stable intermediate species marking the start of oxidation reactions in a transient spray under compression ignition conditions. In this study, the LIF images of the formaldehyde formed in a diesel fuel spray during ignition process have been successfully obtained for the first time by exciting formaldehyde with the 3rd harmonic of the Nd:YAG laser. SSI images of the vaporizing spray, and the LIF images of formaldehyde were obtained together with the corresponding time record of combustion chamber pressures at initial ambient temperatures ranging from 580 K to 790 K.
Technical Paper

Investigation on Premixed Charge Compression Ignition Combustion Control Using Multi Pulse Ultrahigh Pressure Injection

2019-04-02
2019-01-1155
Compression ignition (CI) engines provide higher thermal efficiency compared to other internal combustion engines although large amounts of NOx and soot are produced during combustion. NOx and soot emissions can be reduced by using Premixed Charge Compression Ignition (PCCI) combustion. However, the problems of PCCI combustion include limited operating range, unstable start of combustion and an increase in combustion noise. The multi-pulse ultrahigh pressure injection allows fuel to be injected near TDC, improving mixture formation and enhancing the possibility to extend the operating range of PCCI combustion. The objective of this paper is to control and extend the operating range of PCCI combustion using multi-pulse ultrahigh pressure injection. This has not been studied before. Combustion characteristics were investigated using apparent rate of heat release analysis, heat balance analysis, exhaust emission measurement and soot concentration measurement.
Technical Paper

Heat Transfer Analysis in a Diesel Engine Based on a Heat Flux Measurement Using a Rapid Compression and Expansion Machine

2017-11-05
2017-32-0115
To investigate the heat transfer phenomena inside the combustion chamber of a diesel engine, a correlation for the heat transfer coefficient in a combustion chamber of a diesel engine was investigated based on heat flux measured by the authors in the previous study(8) using the rapid compression and expansion machine. In the correlation defined in the present study, thermodynamically estimated two-zone temperatures in the burned zone and the unburned zone are applied. The characteristic velocity given in the correlation is related to the speed of spray flame impinging on the wall during the fuel injection period. After the fuel injection period, the velocity term of the Woschni’s equation is applied. It was shown that the proposed correlation well expresses heat transfer phenomena in diesel engines.
X