Refine Your Search

Topic

Search Results

Journal Article

The Effects of Charge Homogeneity and Repeatability on Particulates Using the PLIF Technique in an Optical DISI Engine

2014-04-01
2014-01-1207
The work was concerned with visualisation of the charge homogeneity and cyclic variations within the planar fuel field near the spark plug in an optical spark ignition engine fitted with an outwardly opening central direct fuel injector. Specifically, the project examined the effects of fuel type and injection settings, with the overall view to understanding some of the key mechanisms previously identified as leading to particulate formation in such engines. The three fuels studied included a baseline iso-octane, which was directly compared to two gasoline fuels containing 10% and 85% volume of ethanol respectively. The engine was a bespoke single cylinder with Bowditch style optical access through a flat piston crown. Charge stratification was studied over a wide spectrum of injection timings using the Planar Laser Induced Fluorescence (PLIF) technique, with additional variation in charge temperature due to injection also estimated when viable using a two-line PLIF approach.
Technical Paper

Combustion Visualization and Experimental Study on Multi-Point Micro-Flame Ignited (MFI) Hybrid Lean-Burn Combustion in 4-Stroke Gasoline Engines

2020-09-15
2020-01-2070
Lean-burn combustion is an effective method for increasing the thermal efficiency of gasoline engines fueled with stoichiometric fuel-air mixture, but leads to an unacceptable level of high cyclic variability before reaching ultra-low nitrogen oxide (NOx) emissions emitted from conventional gasoline engines. Multi-point micro-flame ignited (MFI) hybrid combustion was proposed to overcome this problem, and can be can be grouped into double-peak type, ramp type and trapezoid type with very low frequency of appearance. This research investigates the micro-flame ignition stages of double-peak type and ramp type MFI combustion captured by high speed photography. The results show that large flame is formed by the fast propagation of multi-point flame occurring in the central zone of the cylinder in the double-peak type. However, the multiple flame sites occur around the cylinder, and then gradually propagate and form a large flame accelerated by the independent small flame in the ramp type.
Journal Article

Challenges for Increased Efficiency through Gasoline Engine Downsizing

2009-04-20
2009-01-1053
In order to achieve the required future CO2 reduction targets, significant further development of both gasoline and diesel engines is required. One of the main methods to achieve this with the gasoline engine in the short to medium term is through the application of engine downsizing, which has resulted in numerous downsized engines already being brought to production. It is, however, considered that there is still significant further CO2 reduction potential through continued development of this technology. This paper considers the future development of gasoline engine downsizing in the short to medium term and the various technologies that can be applied to further increase the efficiency of operation. As such this paper covers, among other areas, fundamental engine layout and design, alternative boosting systems, methods of increasing part load efficiency and vehicle modelling, and uses analysis tools and engine test results to show the benefits achievable.
Journal Article

A Study of Gasoline-Alcohol Blended Fuels in an Advanced Turbocharged DISI Engine

2009-04-20
2009-01-0138
This work was concerned with evaluation of the performance and emissions of potential future biofuels during advanced spark ignition engine operation. The fuels prepared included three variants of gasoline, three gasoline-ethanol blends and a gasoline-butanol fuel altogether covering a range of oxygen mass concentrations and octane numbers to identify key influencing parameters. The combustion of the fuels was evaluated in a turbocharged multi-cylinder direct fuel injection research engine equipped with a standard three-way catalyst and an external EGR circuit that allowed use of either cooled or non-cooled EGR. The engine operating effects studied at both part and boosted high load conditions included fuel injection timing and pressure, excess air tolerance, EGR tolerance and spark retard limits. A number of blends were also mapped at suitable sites across the European drive cycle under downsized engine conditions.
Technical Paper

The effective use of ethanol for greenhouse gas emissions reduction in a diesel engine

2020-01-13
2019-36-0157
Regulations have been established for the monitoring and reporting of greenhouse gas (GHG) emissions and fuel consumption from the transport sector. Low carbon fuels combined with new powertrain technologies have the potential to provide significant reductions in GHG emissions while decreasing the dependence on fossil fuel. In this study, a lean-burn ethanol-diesel dual-fuel combustion strategy has been used as means to improve upon the efficiency and emissions of a conventional diesel engine. Experiments have been performed on a 2.0 dm3 single cylinder heavy-duty engine equipped with port fuel injection of ethanol and a high-pressure common rail diesel injection system. Exhaust emissions and fuel consumption have been measured at a constant engine speed of 1200 rpm and various steady-state loads between 0.3 and 2.4 MPa net indicated mean effective pressure (IMEP).
Technical Paper

Developing a Fuel Stratification Concept on a Spark Ignition Engines

2007-04-16
2007-01-0476
A fuel stratification concept has been developed in a three-valve twin-spark spark ignition engine. This concept requires that two fuels or fuel components of different octane numbers (ON) be introduced into the cylinder separately through two independent inlet ports. They are then stratified into two regions laterally by a strong tumbling flow and ignited by the spark plug located in each region. This engine can operate in the traditional stratified lean-burn mode at part loads to obtain a good part-load fuel economy as long as one fuel is supplied. At high loads, an improved fuel economy might also be obtained by igniting the low ON fuel first and leaving the high ON fuel in the end gas region to resist knock. This paper gives a detailed description of developing the fuel stratification concept, including optimization of in-cylinder flow, mixture and combustion.
Technical Paper

CAI Combustion with Methanol and Ethanol in an Air-Assisted Direct Injection SI Engine

2008-06-23
2008-01-1673
CAI combustion has the potential to be the most clean combustion technology in internal combustion engines and is being intensively researched. Following the previous research on CAI combustion of gasoline fuel, systematic investigation is being carried out on the application of bio-fuels in CAI combustion. As part of an on-going research project, CAI combustion of methanol and ethanol was studied on a single-cylinder direct gasoline engine with an air-assisted injector. The CAI combustion was achieved by trapping part of burnt gas within the cylinder through using short-duration camshafts and early closure of the exhaust valves. During the experiment the engine speed was varied from 1200rpm to 2100rpm and the air/fuel ratio was altered from the stoichiometry to the misfire limit. Their combustion characteristics were obtained by analysing cylinder pressure trace.
Technical Paper

Pre Versus Post Compressor Supply of Cooled EGR for Full Load Fuel Economy in Turbocharged Gasoline Engines

2008-04-14
2008-01-0425
The work was concerned with applying cooled EGR for improved high load fuel economy and reduced pollutant emissions in a turbocharged gasoline engine. While the thermodynamic benefits of EGR were clear, challenges remain to bring the technique to market. A comparison of pre and post compressor EGR supply indicated that post-compressor routing allowed higher compressor efficiencies to be maintained and hence reduced compressor work as the mass flow of EGR was increased. However, with this post-compressor routing, attaining sufficient EGR rate was not possible over the required operating map. Furthermore, at higher engine speeds where the pre-turbine exhaust pressure was greater than the intake plenum pressure, the timing of peak in-cylinder pressure was not as readily advanced towards the optimum.
Technical Paper

Experimental Studies of a 4-Stroke Multi-Cylinder Gasoline Engine with Controlled Auto-Ignition (CAI) Combustion

2007-11-28
2007-01-2609
Controlled Auto-Ignition (CAI), also known as HCCI (Homogeneous Charge Compression Ignition), is increasingly seen as a very effective way of lowering both fuel consumption and emissions from gasoline engines. Therefore, it's seen as one of the best ways to meet future engine emissions and CO2 legislations. This combustion concept was achieved in a Ford production, port-injected, 4 cylinder gasoline engine. The only major modification to the original engine was the replacement of the original camshafts by a new set of custom made ones. The CAI operation was accomplished by means of using residual gas trapping made possible by the use of VCT (variable cam timing) on both intake and exhaust camshafts. When running on CAI, the engine was able to achieve CAI combustion with in a load range of 0.5 to 4.5 BMEP, and a speed range of 1000 to 3500 rpm. In addition, spark assisted CAI operation was employed to extend the operational range of low NOx and low pumping loss at part-load conditions.
Technical Paper

Diesel Soot Oxidation under Controlled Conditions

2001-09-24
2001-01-3673
A quantitative relationship between diesel soot oxidation rate and oxidation temperature and oxygen partial pressure was investigated by burning the diesel exhaust soot particles in a controlled flat flame supplied with methane/air/oxygen/nitrogen mixtures. The oxidation temperature and the oxygen partial pressure were controlled in the ranges of 1530 to 1820 K and 0.01 to 0.05 atm (1atm = 1.01325 bar) respectively. Soot particle size distribution measurements were achieved with transmission electron microscopy (TEM) for particle samples that were collected on copper grids at different positions along the flame centerline. Oxidation periods were determined by means of laser Doppler anemometry (LDA). The experimental results showed that the experimental oxidation rates fall between the values predicted by the Nagle and Strickland-Constable formula and those by the Lee formula.
Technical Paper

Dilution Effects on the Controlled Auto-Ignition (CAI) Combustion of Hydrocarbon and Alcohol Fuels

2001-09-24
2001-01-3606
This paper presents results from an experimental programme researching the in-cylinder conditions necessary to obtain homogenous CAI (or HCCI) combustion in a 4-stroke engine. The fuels under investigation include three blends of Unleaded Gasoline, a 95 RON Primary Reference Fuel, Methanol, and Ethanol. This work concentrates on establishing the CAI operating range with regard to Air/Fuel ratio and Exhaust Gas Re-circulation and their effect on the ignition timing, combustion rate and variability, Indicated thermal efficiency, and engine-out emissions such as NOx. Detailed maps are presented, defining how each of the measured variables changes over the entire CAI region. Results indicate that the alcohols have significantly higher tolerance to dilution than the hydrocarbon fuels tested. Also, variations in Gasoline blend have little effect on any of the combustion parameters measured.
Technical Paper

The Upper-Load Extension of a Boosted Direct Injection Poppet Valve Two-Stroke Gasoline Engine

2016-10-17
2016-01-2339
Engine downsizing can effectively improve the fuel economy of spark ignition (SI) gasoline engines, but extreme downsizing is limited by knocking combustion and low-speed pre-ignition at higher loads. A 2-stroke SI engine can produce higher upper load compared to its naturally aspirated 4-stroke counterpart with the same displacement due to the double firing frequency at the same engine speed. To determine the potential of a downsized two-cylinder 2-stroke poppet valve SI gasoline engine with 0.7 L displacement in place of a naturally aspirated 1.6 L gasoline (NA4SG) engine, one-dimensional models for the 2-stroke gasoline engine with a single turbocharger and a two-stage supercharger-turbocharger boosting system were set up and validated by experimental results.
Technical Paper

Characterization of Low Load Ethanol Dual-Fuel Combustion using Single and Split Diesel Injections on a Heavy-Duty Engine

2016-04-05
2016-01-0778
The use of two different fuels to control the in-cylinder charge reactivity of compression ignition engines has been shown as an effective way to achieve low levels of nitrogen oxides (NOx) and soot emissions. The port fuel injection of ethanol on a common rail, direct injected diesel engine increases this reactivity gradient. The objective of this study is to experimentally characterize the controllability, performance, and emissions of ethanol-diesel dual-fuel combustion in a single cylinder heavy-duty engine. Three different diesel injection strategies were investigated: a late split, an early split, and an early single injection. The experiments were performed at low load, where the fuel conversion efficiency is typically reduced due to incomplete combustion. Ethanol substitution ratios varied from 44-80% on an energy input basis.
Technical Paper

Characterization and Potential of Premixed Dual-Fuel Combustion in a Heavy Duty Natural Gas/Diesel Engine

2016-04-05
2016-01-0790
Natural Gas (NG) is currently a cost effective substitute for diesel fuel in the Heavy-Duty (HD) diesel transportation sector. Dual-Fuel engines substitute NG in place of diesel for decreased NOx and soot emissions, but suffer from high engine-out methane (CH4) emissions. Premixed Dual-Fuel Combustion (PDFC) is one method of decreasing methane emissions and simultaneously improving engine efficiency while maintaining low NOx and soot levels. PDFC utilizes an early diesel injection to adjust the flammability of the premixed charge, promoting more uniform burning of methane. Engine experiments were carried out using a NG and diesel HD single cylinder research engine. Key speeds and loads were explored in order to determine where PDFC is effective at reducing engine-out methane emissions over Conventional Dual-Fuel which uses a single diesel injection for ignition.
Technical Paper

A Lean Burn Gasoline Fueled Pre-Chamber Jet Ignition Combustion System Achieving High Efficiency and Low NOx at Part Load

2012-04-16
2012-01-1146
Turbulent Jet Ignition is an advanced spark-initiated pre-chamber combustion system for otherwise standard spark ignition engines. Combustion in the main chamber is initiated by jets of partially combusted (reacting) pre-chamber products which provide a high energy ignition source. The resultant widely distributed ignition sites allow relatively small flame travel distances enabling short combustion durations and high burn rates. Demonstrated benefits include ultra lean operation (λ≻2) at part load and high load knock limit extension. Previous jet ignition experimental results have highlighted high thermal efficiencies, high load capability and near-zero engine-out NOx emissions in a standard contemporary engine platform. Although previous results of this system have been very promising, the main hurdle has been the need for a dual fuel system, with liquid gasoline used in the main combustion chamber and small fractions of gaseous propane in the pre-chamber.
Technical Paper

Experiment and Analysis of a Direct Injection Gasoline Engine Operating with 2-stroke and 4-stroke Cycles of Spark Ignition and Controlled Auto-Ignition Combustion

2011-08-30
2011-01-1774
Over recent years, in order to develop more efficient and cleaner gasoline engines, a number of new engine operating strategies have been proposed and many of them have been studied on different engines but there is a lack of different comparison between various operating strategies. In this work, a single cylinder direct injection gasoline engine equipped with an electro-hydraulic valvetrain system has been commissioned and used to achieve seven different operation modes, which are 4-stroke throttle-controlled SI, 4-stroke intake valve throttled SI, 4-stroke positive valve overlap SI, 4-stroke negative valve overlap CAI, 4-stroke exhaust rebreathing CAI, 2-stroke CAI and 2-stroke SI. Their performance and emission characteristics are presented and discussed.
Technical Paper

Potentials of External Exhaust Gas Recirculation and Water Injection for the Improvement in Fuel Economy of a Poppet Valve 2-Stroke Gasoline Engine Equipped with a Two-Stage Serial Charging System

2018-04-03
2018-01-0859
Engine downsizing is one of the most effective means to improve the fuel economy of spark ignition (SI) gasoline engines because of lower pumping and friction losses. However, the occurrence of knocking combustion or even low-speed pre-ignition at high loads is a severe problem. One solution to significantly increase the upper load range of a 4-stroke gasoline engine is to use 2-stroke cycle due to the double firing frequency at the same engine speed. It was found that a 0.7 L two-cylinder 2-stroke poppet valve gasoline engine equipped with a two-stage serial boosting system, comprising a supercharger and a downstream turbocharger, could replace a 1.6 L naturally aspirated 4-stroke gasoline engine in our previous research, but its fuel economy was close to that of the 4-stroke engine at upper loads due to knocking combustion.
Technical Paper

Numerical Simulation of the Gasoline Spray with an Outward-Opening Piezoelectric Injector: A Comparative Study of Different Breakup Models

2018-04-03
2018-01-0272
The outward-opening piezoelectric injector can achieve stable fuel/air mixture distribution and multiple injections in a single cycle, having attracted great attentions in direct injection gasoline engines. In order to realise accurate predictions of the gasoline spray with the outward-opening piezoelectric injector, the computational fluid dynamic (CFD) simulations of the gasoline spray with different droplet breakup models were performed in the commercial CFD software STAR-CD and validated by the corresponding measurements. The injection pressure was fixed at 180 bar, while two different backpressures (1 and 10 bar) were used to evaluate the robustness of the breakup models. The effects of the mesh quality, simulation timestep, breakup model parameters were investigated to clarify the overall performance of different breakup model in modeling the gasoline sprays.
Technical Paper

Analysis of Gaseous and PM Emissions of 4-Stroke CAI/HCCI and SI Combustion in a DI Gasoline Engine

2013-04-08
2013-01-1549
Direct injection gasoline engines have the potential for improved fuel economy through principally the engine down-sizing, stratified charge combustion, and Controlled Auto Ignition (CAI). However, due to the limited time available for complete fuel evaporation and the mixing of fuel and air mixture, locally fuel rich mixture or even liquid fuel can be present during the combustion process of a direct injection gasoline engine. This can result in significant increase in UHC, CO and Particulate Matter (PM) emissions from direct injection gasoline engines which are of major concerns because of the environmental and health implications. In order to investigate and develop a more efficient DI gasoline engine, a camless single cylinder DI gasoline engine has been developed. Fully flexible electro-hydraulically controlled valve train was used to achieve spark ignition (SI) and Controlled Autoignition (CAI) combustion in both 4-stroke and 2-stroke cycles.
Technical Paper

2-Stroke CAI Operation on a Poppet Valve DI Engine Fuelled with Gasoline and its Blends with Ethanol

2013-04-08
2013-01-1674
Controlled Auto Ignition (CAI), also known as Homogeneous Charge Compression Ignition (HCCI), is one of the most promising combustion technologies to reduce the fuel consumption and NOx emissions. Currently, CAI combustion is constrained at part load operation conditions because of misfire at low load and knocking combustion at high load, and the lack of effective means to control the combustion process. Extending its operating range including high load boundary towards full load and low load boundary towards idle in order to allow the CAI engine to meet the demand of whole vehicle driving cycles, has become one of the key issues facing the industrialisation of CAI/HCCI technology. Furthermore, this combustion mode should be compatible with different fuels, and can switch back to conventional spark ignition operation when necessary. In this paper, the CAI operation is demonstrated on a 2-stroke gasoline direct injection (GDI) engine equipped with a poppet valve train.
X