Refine Your Search

Topic

null

Search Results

Viewing 1 to 16 of 16
Standard

Vehicle Testing Requirements for Replacement Refrigerants for CFC-12 (R-12) Mobile Air-Conditioning Systems

2011-11-21
J1659_201111
The purpose of this SAE Recommended Practice is to establish the specific criteria for the selection of a replacement refrigerant for mobile CFC-12 (R-12) air-conditioning (A/C) systems. This document provides guidelines for qualifying candidate refrigerant. The requirements include laboratory and field testing. The alternate refrigerant shall provide comparable system performance as CFC-12 (R-12) as defined herein. The vehicle testing shall be conducted on representative vehicle manufacturer’s product line, in which the refrigerant is intended to be used, such as cycling clutch orifice tube, constant run orifice tube, cycling clutch expansion valve, or continuous run expansion valve refrigerant system. This document is complete only when combined with the requirements of SAE J1657.
Standard

Recommended Practice for an Engineering Analysis for A/C Efficiency Credits

2019-07-18
J3174_201907
Under U.S. GHG and CAFE regulations, manufacturers are required to perform confirmatory testing to validate indirect air conditioning credits (refer to 40 CFR 86.1868-12). The purpose of this Reccomended Practice is to provide manufacturers with updated criteria for the 2020 and later model years. This Recommended Practice discribes the work done by the IMAC GHG CRP to develop test procedures, publish SAE Standards, and determine performance requirements to demonstrate the performance of A/C technologies from the pre-approved credit menu meeting regulatory requirements. Also, enclosed in this Recommended Practice are instructions that can be used by vehicle manufacturers in establishing an engineering analysis in lieu of performing the AC17 test on a vehicle which does not incorporate the credit-generating technologies.
Standard

Recommended Practice for an Engineering Analysis for A/C Efficiency Credits

2022-09-08
J3174_202209
Under U.S. GHG and CAFE regulations, manufacturers are required to perform confirmatory testing to validate indirect air conditioning credits (refer to 40 CFR 86.1868-12). The purpose of this SAE Recommended Practice is to provide manufacturers with updated criteria for the 2020 and later model years. This SAE Recommended Practice is also suitable for reporting credit using and Engineering Analysis to the California Air Resources Board (CARB). This SAE Recommended Practice describes the work done by the IMAC GHG CRP to develop test procedures, publish SAE Standards, and determine performance requirements to demonstrate the performance of A/C technologies from the pre-approved credit menu meeting regulatory requirements. Also, enclosed in this SAE Recommended Practice are instructions that can be used by vehicle manufacturers in establishing an engineering analysis in lieu of performing the AC17 test on a vehicle which does not incorporate the credit-generating technologies.
Standard

Test Procedure for Internal Heat Exchangers of Mobile Air-Conditioning Systems with R-134a or R-1234yf Refrigerant

2023-02-14
J3094_202302
The purpose of this SAE Standard is to define a common set of thermodynamic test conditions to evaluate internal heat exchangers for use with R-134a and R-1234yf refrigerants in mobile air-conditioning systems. This SAE Standard can be used to test actual vehicle IHX designs or standardized IHX samples, which can be used for comparison based on a common length and shape.
Standard

Test Procedure for Internal Heat Exchangers of Mobile Air-Conditioning Systems with R-134a or R-1234yf Refrigerant

2019-02-15
J3094_201902
The purpose of this SAE Standard is to define a common set of thermodynamic test conditions to evaluate internal heat exchangers for use with R-134a and R-1234yf refrigerants in mobile air-conditioning systems. This standard can be used to test actual vehicle IHX designs or standardized IHX samples, which can be used for comparison based on a common length and shape.
Standard

Test Procedure for Internal Heat Exchangers of Mobile Air-Conditioning Systems with R-134a or R-1234yf Refrigerant

2020-04-02
J3094_202004
The purpose of this SAE Standard is to define a common set of thermodynamic test conditions to evaluate internal heat exchangers for use with R-134a and R-1234yf refrigerants in mobile air-conditioning systems. This standard can be used to test actual vehicle IHX designs or standardized IHX samples, which can be used for comparison based on a common length and shape.
Standard

Standard for Refrigerant Risk Analysis for Mobile Air Conditioning Systems

2011-02-04
J2773_201102
This Standard describes methods to understand the risks associated with vehicle mobile air conditioning [MAC] systems in all aspects of a vehicle’s lifecycle including design, production, assembly, operation and end of life. Information for input to the risk assessment is provided in the Appendices of this document. This information should not be considered to be complete, but only a reference of some of the data needed for a complete analysis of the risk associated with the use of refrigerants in MAC systems.
Standard

Standard for Refrigerant Risk Analysis for Mobile Air Conditioning Systems

2020-05-15
J2773_202005
This SAE Standard describes methods to understand the risks associated with vehicle mobile air conditioning (MAC) systems in all aspects of a vehicle’s lifecycle including design, production, assembly, operation, and end of life. Information for input to the risk assessment is provided in the appendices of this document. This information should not be considered to be complete, but only a reference of some of the data needed for a complete analysis of the risk associated with the use of refrigerants in MAC systems.
Standard

Standard for Refrigerant Risk Analysis for Mobile Air Conditioning Systems

2017-02-21
J2773_201702
This Standard describes methods to understand the risks associated with vehicle mobile air conditioning [MAC] systems in all aspects of a vehicle’s lifecycle including design, production, assembly, operation and end of life. Information for input to the risk assessment is provided in the Appendices of this document. This information should not be considered to be complete, but only a reference of some of the data needed for a complete analysis of the risk associated with the use of refrigerants in MAC systems.
Standard

Measurement of Passenger Compartment Refrigerant Concentrations Under System Refrigerant Leakage Conditions

2011-02-04
J2772_201102
This Standard is restricted to refrigeration circuits that provide air-conditioning for the passenger compartments of passenger and commercial vehicles. This Standard includes analytical and physical test procedures to evaluate concentration inside the passenger compartment. In the early phases of vehicle evaluation, usage of the analytical approach may be sufficient without performing physical tests. The physical test procedure involves releasing refrigerant from an external source to a location adjacent to the evaporator core (inside the HVAC-Module). An apparatus is used to provide a repeatable, calibrated leak rate. If the system has multiple evaporators, leakage could be simulated at any of the evaporator locations. This standard gives detail information on the techniques for measuring R-744 [CO2] and R-1234yf [HFO-1234yf], but the general techniques described here can be used for other refrigerants as well.
Standard

Safety Standards for Motor Vehicle Refrigerant Vapor Compression Systems

2011-12-19
J639_201112
This SAE Standard applies to refrigerant vapor compression systems that provide cooling and/or heating for passenger cars, light trucks and commercial vehicles (on and off road) that use automotive type mobile air conditioning [MAC] systems. Large trucks, buses and other vehicles that do not use typical automotive a/c systems or use refrigerants not listed in this document are not covered by this standard. This standard covers any vehicle with a MAC system using a belt or electric motor driven compressor. This document provides standards for design, assembly, test and service of MAC systems to minimize environmental, health and safety impacts. Also included are cautionary statements for the service industry to alert technicians to the inadvisability and possible health or safety effects associated with venting refrigerant during service. It is not intended to restrict the use, or further development, of other types of refrigeration systems for mobile air conditioning applications.
Standard

Safety and Design Standards for Motor Vehicle Refrigerant Vapor Compression Systems

2020-11-09
J639_202011
This SAE Standard applies to refrigerant vapor compression systems that provide cooling and/or heating for passenger cars, light trucks, and commercial vehicles (on and off road) that use automotive type mobile air conditioning (MAC) systems. Large trucks, buses, and other vehicles that do not use typical automotive A/C systems or use refrigerants not listed in this document are not covered by this standard. This standard covers vehicles with MAC systems using belt driven compressors and electric motor driven compressors. This document provides industry-recognized standards for the design, assembly, and test of MAC systems, including necessary service equipment, and is intended to cover all phases of the lifetime of MAC systems to minimize environmental, health, and safety impacts. The standards listed in this document cover the currently accepted industry guidelines and procedures.
Standard

Mobile Air Conditioning System Refrigerant Emission Charts for R-134a and R-1234yf

2013-04-02
J2727_201304
The “System Emissions Chart” contained herein is intended to serve as a means of estimating the annual refrigerant emission rate (grams per year) from new production A/C systems equipped with specified component technologies. It provides emission values for various component technologies that are currently available, and can be expanded as new technologies are commercialized. This document provides the information to develop an Excel file template “System Emissions Chart” for system emission analysis. The chart includes automotive compressor technologies for conventional mobile air conditioning systems as well as those using semi-hermetic compressors. This standard can be considered a companion document to SAE J2763 Test Procedure for Determining Refrigerant Emissions from Mobile Air Conditioning Systems. SAE J2727 estimates system emissions, taking into account production assembly variation and accounts for components that are 100% helium leak tested prior to vehicle final assembly.
Standard

PASSENGER CAR WINDSHIELD DEFROSTING SYSTEMS

1964-08-01
J902_196408
The scope of this SAE Recommended Practice is to establish uniform test procedures and minimum performance requirements for passenger car windshield defrosting systems. It is limited to tests that can be conducted on uniform test equipment in commercially available laboratory facilities. The test procedures and minimum performance requirements, outlined in this recommended practice, are based on currently available engineering data. It is the intent that all portions of the recommended practice will be periodically reviewed and revised as additional knowledge regarding vehicle defroster performance is developed.
Standard

Passenger Vehicle Windshield Demisting and Defrosting Systems

2019-09-25
J902_201909
This SAE Recommend Practice establishes for passenger cars, light trucks, and multipurpose vehicles with GVW of 4500 kg (10000 pounds) or less, as defined by EPA, and M1 category vehicles as defined by the European Commission:
Standard

Motor Vehicle Heater Test Procedure

2011-05-26
J638_201105
This SAE Recommended Practice, limited to liquid coolant systems, establishes uniform vehicle heater test procedures. Both laboratory and complete vehicle tests are specified in this document. Required test equipment, facilities, and definitions are included. NOTE— Defrosting and defogging procedures and requirements can be found in SAE J902, J381, J382, and J953.
X