Refine Your Search

Search Results

Viewing 1 to 7 of 7
Journal Article

Rule-Based Optimization of Intermittent ICE Scheduling on a Hybrid Solar Vehicle

2009-09-13
2009-24-0067
In the paper, a rule-based (RB) control strategy is proposed to optimize on-board energy management on a Hybrid Solar Vehicle (HSV) with series structure. Previous studies have shown the promising benefits of such vehicles in urban driving in terms of fuel economy and carbon dioxide reduction, and that economic feasibility could be achieved in a near future. The control architecture consists of two main loops: one external, which determines final battery state of charge (SOC) as function of expected solar contribution during next parking phase, and the second internal, whose aim is to define optimal ICE- EG power trajectory and SOC oscillation around the final value, as addressed by the first loop. In order to maximize the fuel savings achievable by a series architecture, an intermittent ICE scheduling is adopted for HSV. Therefore, the second loop yields the average power at which the ICE is operated as function of the average values of traction power demand and solar power.
Technical Paper

Optimization of Control Parameters for a Heavy-Duty CNG Engine via Co-Simulation Analysis

2011-04-12
2011-01-0704
Internal combustion engines for vehicle propulsion are more and more sophisticated due to increasingly restrictive environmental regulations. In case of heavy-duty engines, Compressed Natural Gas (CNG) fueling coupled with Three-Way Catalyst (TWC) and Exhaust Gas Recirculation (EGR) can help in meeting the imposed emission limits and preventing from thermal stress of engine components. To cope with the new issues associated with the more complex hardware and to improve powertrain performance and reliability and after-treatment efficiency, the engine control strategies must be reformulated. The paper focuses on the steady-state optimization of control parameters for a heavy-duty engine fueled by CNG and equipped with turbocharger and EGR. The optimization analysis is carried out to design EGR, spark timing and wastegate control, aimed at increasing fuel economy while reducing in-cylinder temperature to prevent from thermal stress of engine components.
Technical Paper

Tuning of the Engine Control Variables of an Automotive Turbocharged Diesel Engine via Model Based Optimization

2011-09-11
2011-24-0146
The paper deals with the steady-state optimal tuning of control variables for an automotive turbocharged Diesel engine. The optimization analysis is based on an engine simulation model, composed of a control oriented model of turbocharger integrated with a predictive multi-zone combustion model, which allows accounting for the impact of control variables on engine performance, NOx and soot emissions and turbine outlet temperature. This latter strongly affects conversion efficiency of after treatment devices therefore its estimation is of great interest for both control and simulation of tailpipe emissions. The proposed modeling structure is aimed to support the engine control design for common-rail turbocharged Diesel engines with multiple injections, where the large number of control parameters requires a large experimental tuning effort.
Technical Paper

ODECS - A Computer Code for the Optimal Design of S.I. Engine Control Strategies

1996-02-01
960359
The computer code ODECS (Optimal Design of Engine Control Strategies) for the design of Spark Ignition engine control strategies is presented. This code has been developed starting from the author's activity in this field, availing of some original contributions about engine stochastic optimization and dynamical models. This code has a modular structure and is composed of a user interface for the definition, the execution and the analysis of different computations performed with 4 independent modules. These modules allow the following calculations: (i) definition of the engine mathematical model from steady-state experimental data; (ii) engine cycle test trajectory corresponding, to a vehicle transient simulation test such as ECE15 or FTP drive test schedule; (iii) evaluation of the optimal engine control maps with a steady-state approach.
Technical Paper

Application of Willans Line Method for Internal Combustion Engines Scalability towards the Design and Optimization of Eco-Innovation Solutions

2015-09-06
2015-24-2397
Main aim of this paper was to exploit the well-known Willans line method in a twofold manner: indeed, beyond the usual identification of Willans line parameters to enable internal combustion engine scaling, it is also proposed to infer further information from identified parameters and correlations, particularly aiming at characterizing mechanical and frictional losses of different engine technologies. The above objectives were pursued relying on extended experimental performance data, which were gathered on different engine families, including turbo-charged Diesel and naturally aspirated gasoline engines. The matching between Willans line scaled performance and experimental ones was extensively tested, thus allowing to reliably proceed to the subsequent objective of characterizing mechanical losses on the basis of identified Willans parameters.
Technical Paper

A Computer Code for S.I. Engine Control and Powertrain Simulation

2000-03-06
2000-01-0938
A computer code oriented to S.I. engine control and powertrain simulation is presented. The model, developed in Matlab-Simulink® environment, predicts engine and driveline states, taking into account the dynamics of air and fuel flows into the intake manifold and the transient response of crankshaft, transmission gearing and vehicle. The model, derived from the code O.D.E.C.S. for the optimal design of engine control strategies now in use at Magneti Marelli, is suitable both for simulation analysis and to achieve optimal engine control strategies for minimum consumption with constraints on exhaust emissions and driveability via mathematical programming techniques. The model is structured as an object oriented modular framework and has been tested for simulating powertrain system and control performance with respect to any given transient and control strategy.
Technical Paper

Enhancing Cruise Controllers through Finite-Horizon Driving Mission Optimization for Passenger Vehicles

2018-04-03
2018-01-1180
In the last few years, several studies have proved the benefits of exploiting information about the road topography ahead of the vehicle to adapt vehicle cruising for fuel consumption reduction. Recent technologies have brought on-board more road information enabling the optimization of the driving profile for fuel economy improvement. In the present paper, a cruise controller able to lowering vehicle fuel consumption taking into account the characteristics of the road the vehicle is traveling through is presented. The velocity profile is obtained by minimizing via discrete dynamic programming the energy spent to move the vehicle. In order to further enhance vehicle fuel efficiency, also the gear shifting schedule is optimized, allowing to avoid useless gear shifts and choose the most suitable gear to match current road load and keeping the engine in its maximum efficiency range. Despite the optimality of the solution provided, dynamic programming entails high computational time.
X