Refine Your Search

Search Results

Viewing 1 to 12 of 12
Technical Paper

Continued Computational Investigation into Circulation Control for the V-22 Osprey Download Reduction; Blowing Slot Optimization

2006-08-30
2006-01-2396
Previous studies have shown that using blowing slots can reduce the effects of the rotor downwash on the main wing of a tilt-rotor aircraft, particularly the V-22 Osprey. The current study investigates the placement and air velocity of the leading edge blowing slot for optimization of the download reduction. The realizable turbulent kinetic energy - rate of dissipation (rke) numerical model available in Fluent 6.2.12 was used to model the flow involved under the rotors and the subsequent downwash around the main wing. It was found that the leading edge blowing slot is most beneficial when it is placed just upwind of the separation point without blowing slots. In the current investigation the optimal configuration is found between 0 percent and 1 percent of the chord length.
Technical Paper

Continued Computational Investigation into Circulation Control for the V-22 Osprey Download Reduction

2005-10-03
2005-01-3187
The commercially available RNG k-e turbulence model with enhanced wall treatment found in Fluent 6.1 was used to solve the flow over a V-22 Osprey wing equipped with blowing slots. The solutions were then compared to experimental data. Good correlation between the computational and experimental data was found. Download on the wing from the rotors while the aircraft is operating in vertical take-off and landing mode was found to be reduced by the blowing slots.
Technical Paper

Sealing and Structural Enhancement System for the Rear Cargo Ramp of a C-130 Aircraft

2007-09-17
2007-01-3883
At flight levels above the ceiling of 10,000 feet, during the operational phase of a sensor deployment system for a C-130 aircraft, it becomes necessary to seal the cargo hold to maintain pressure for the safety and comfort of the crew and operators. In order for the sensor deployment System to have full mission support capabilities for DoD reconnaissance needs, a system must be designed where-by the cargo area may be sealed once the system has been deployed. Currently, with the sensor pod in position, the ramp can be closed to within a few inches of the locked position. The door in this position, for stability during flight, must be locked and structurally supported to maintain the aircrafts design requirements. This presents the first of a series of issues that must be examined for the success of the final design. To seal the remaining area, an expanding “bladder-seal” has been developed.
Technical Paper

Downwash Wake Reduction Investigation for Application on the V-22 “Osprey”

2003-09-08
2003-01-3020
The downwash of the prop-rotor blades of the Bell/Boeing V-22 “Osprey” in hover mode creates an undesirable negative lift on the wing of the aircraft. This downforce can be reduced through a number of methods. Neglecting all other effects, such as power requirements, this research investigated the feasibility of using circulation control, through blowing slots on the leading and trailing edge of the airfoil to reduce the wake profile under the wing. A model was built at West Virginia University (WVU) and tested in a Closed Loop Wind Tunnel. The airfoil was placed normal to the airflow using the tunnel air to simulate the vertical component of the downwash experienced in hover mode. The standard hover mode flap angle of 67 degrees was used throughout the testing covered in this paper. All of these tests were conducted at a free stream velocity of 59 fps, and the baseline downforce on the model was measured to be 5.45 lbs.
Technical Paper

Dynamic Modal Analysis and Optimization of a Mechanical Sensor Arm Deployment System for a C-130 Aircraft

2004-11-02
2004-01-3129
During structural engineering design two of the most overlooked design facets of a finished product is understanding the behavior characteristics of how the product will react when resonated at its natural frequencies and actually defining and understanding the overall vibration profile responsible for the excitation of the structure. A C-130 mechanical arm/pod system has been developed to accommodate 1,000-pounds of sensor payload deployable in flight from a C-130 Hercules military aircraft (variants B thru J). The mechanical arm/pod system will be subjected to a profile of vibration from numerous sources during deployment and while in the final operating position. A general vibration profile for the mechanical arm/pod will be compiled from the plane’s four T-56-A-15 turboprop engines, the atmospheric turbulence and random gust loads.
Technical Paper

Design of a Standardized Roll-On, Roll-Off Sensor Pallet System for a C-130 Aircraft

2004-11-02
2004-01-3092
The development of a standardized roll-on, roll-off (RoRo) sensor pallet system for a C-130 aircraft was conceived by the National Guard and the Counter Narco-Terrorism Technology Development Office to assist in counterdrug reconnaissance activities within the United States and surveillance and reconnaissance missions worldwide. West Virginia University was contracted to perform the design and development of this system because of their innovative design ideas. Before development, the design parameters were established by these two DoD agencies, their mission requirements and by the limitations of the C-130 aircraft. These limitations include using Commercial off the Shelf (COTS) and Government off the Shelf (GOTS) items when developing the system that must be universal on all C-130 aircrafts variants B thru H. Further design criteria are by the limitations of the C-130 aircraft and its existing mission requirements.
Technical Paper

Velocity Profile Measurements Under the Ramp of a Lockheed Martin C-130 Aicraft

2004-11-02
2004-01-3099
Predicting the aerodynamic forces in the wake of an object can be difficult using theoretical and computational methods. This is particularly true for airframes that have multiple engines and whose flight envelope involves the use of large control surfaces. One such aircraft is the C-130 which adds the further complication of a rear cargo door and ramp. Modeling the wake near the rear of this aircraft can be difficult and inaccurate unless validated against actual flight data. For this study a simple test apparatus, developed by the authors, was used to measure the velocity profile in the wake area of the rear cargo door of such an aircraft. The test apparatus contained 32 pressure ports, one of these ports was assigned to a static pressure probe. All pressures were referenced to an additional static pressure measured at the edge of the cargo ramp. The remaining, 31 pressure probes were distributed regularly between three vertical rake assemblies.
Technical Paper

Crash Analysis of a Command and Control System Deployed on the Rear Ramp of a C-130 Aircraft

2005-10-03
2005-01-3424
In order to prepare for flight on-board a military aircraft with an experimental prototype system, a crash scenario analysis was performed to ensure safety of the aircraft and its crew. The following describes the crash analysis of the Oculus sensor pallet system in preparation for a flight test on a C-130 aircraft. In this particular case, the two units were analyzed individually in accordance with the loading standards outlined in MIL-HDBK-1791. The unit that deploys outside of the rear cargo ramp of the aircraft (sensor platform) was analyzed more closely than the system that remains locked (operator station) into the rail system of the aircraft. As the results show, both systems are capable of being subjected to crash loading forces.
Technical Paper

Maintenance Issues and Fail Safes of the Oculus Sensor Platform System

2005-10-03
2005-01-3427
When designing the Oculus sensor platform, many safety issues such as designing fail safes, adapting to flying situations, and examining situations produced by exposure to real-world conditions were taken into consideration. When predicting maintenance issues, environmental conditions that the platform will have to encounter were assessed. A material that was lightweight and strong enough to withstand the harsh environmental conditions experienced outside the C-130 aircraft was needed. In addition to the material used, another issue addressed was the ability to repair the platform easily and efficiently. Normal operations expose the components to significant wear and tear, which requires the replacement of parts to maintain safe operations. Oculus was constructed to allow for component replacement without deconstruction of the entire platform. While environmental factors were a concern, mechanical design and functionality, along with safety, was vital to the project.
Technical Paper

Development of a Remote Sensor Deployment System for Expanded C4ISR Use of the C-130 Aircraft

2005-10-03
2005-01-3395
Enhancing the capabilities of established airframes to meet expanded mission requirements is preferential to the design of specialized aircraft. The high cost associated with the research and development of a specialized aircraft platform has shifted the concentration towards the modification of existing aircraft to support multiple C4ISR missions. The recently developed Oculus sensor deployment system is one such example of this trend, providing a fully integrated aerial visual enhancement platform with multi-mission capabilities. This paper provides a short survey of the Oculus sensor pallet system and overviews some of the multiple guidelines used which ensure that various remote sensing technologies may be securely and simultaneously deployed.
Technical Paper

Experimental Stress/Strain Analysis of a Standardized Sensor Platform for a C-130 Aircraft

2005-10-03
2005-01-3426
Project Oculus is an in-flight deployable mechanical arm/pod system that will accommodate 500 pounds of sensor payload, developed for a C-130 military aircraft. The system is designed for use in counter narco-terrorism and surveillance applications by the Department of Defense and the National Guard [1]. A prototype of the system has been built and is in the testing/analysis phase. The purpose of this study was to analyze the actual stresses and strains in the critical areas found using previous Finite Element (FE) simulations and to ensure that acceptable safety requirements have been met. The system components tested will be redesigned, tested, and reconstructed in the case of unacceptable safety factors or if more reliable methods can be implemented. The system was built to be deployed and retracted in flight, to avoid causing any problems in take off and landing.
Technical Paper

Electromagnetic Compliance Issues of Project Oculus

2005-10-03
2005-01-3394
Project Oculus, an experimental configurable sensor platform for deploying airborne sensors on a C-130 aircraft, is currently in its pre-flight testing phase. The electronics driving the platform are available commercially off the shelf (COTS) and as such are not automatically rated to comply with stringent military electromagnetic standards as defined in MIL-STD-461. These COTS electronics include efficient switching power converters, variable frequency motor drives (VFD), and microprocessor based equipment, all of which can present electromagnetic interference (EMI) issues. Even in a design where EMI issues were not considered up front, it is often possible to bring the overall configuration into compliance. Switching and digital clock signals produce both conducted and radiated noise emissions. Long cable runs and enclosure apertures become noise transmitting antennas. Large switching currents place noise on the power lines causing interference with other equipment.
X