Refine Your Search

Topic

Search Results

Journal Article

Design of a Flywheel Based Energy Storage and Distribution System for Rural Villages in China

2009-04-20
2009-01-0525
There are 30 million people in remote, rural communities in China without access to electricity. The government of China has initiated an ongoing effort to provide constant, reliable power to these citizens. Renewable energy is being utilized to solve this problem, which necessitates the use of a storage medium for energy, because renewable energies (i.e. wind and/or solar power) are inherently intermittent, variable, and largely unpredictable. By storing excess energy when it is plentiful (for a maximum feasible time of two days) and distributing it to the community in times of scarcity, the intermittent power is effectively leveled and auxiliary power is provided. A high-inertia flywheel was designed for this application because of its simplicity, ease of maintenance, low cost, and reliability. This design addresses many problems including bearing losses, aerodynamic losses, and distribution losses. The proposed design consists of a six spoke layout with a large outer ring.
Technical Paper

Modeling the Radio Frequency Coaxial Cavity Plasma Ignitor as an Internal Combustion Engine Ignition System

1998-02-23
980168
A quarter-wave radio frequency coaxial cavity plasma ignitor can be used to generate a combustion-initiating energy source in an internal combustion engine. This paper outlines research results on the development of such an ignitor. The system, which operates in the 820 - 900 MHz frequency range, uses a high Q quarter-wave cavity that generates plasma when resonating. Pressure testing has shown that the device can generate plasmas at spark ignition compression pressures. A resonator operating at these frequencies has been attached to a static combustion chamber and modeled numerically in order to determine the operational characteristics of the device in a combustion chamber.
Technical Paper

Sealing and Structural Enhancement System for the Rear Cargo Ramp of a C-130 Aircraft

2007-09-17
2007-01-3883
At flight levels above the ceiling of 10,000 feet, during the operational phase of a sensor deployment system for a C-130 aircraft, it becomes necessary to seal the cargo hold to maintain pressure for the safety and comfort of the crew and operators. In order for the sensor deployment System to have full mission support capabilities for DoD reconnaissance needs, a system must be designed where-by the cargo area may be sealed once the system has been deployed. Currently, with the sensor pod in position, the ramp can be closed to within a few inches of the locked position. The door in this position, for stability during flight, must be locked and structurally supported to maintain the aircrafts design requirements. This presents the first of a series of issues that must be examined for the success of the final design. To seal the remaining area, an expanding “bladder-seal” has been developed.
Technical Paper

Experimental Investigation of Dielectrics for Use in Quarter Wave Coaxial Resonators

2007-04-16
2007-01-0256
Current research has involved manipulating the ignition inside of the combustion chamber. It has been demonstrated that an RF plasma flame can be generated from microwaves in a Quarter Wave Coaxial Cavity Resonator (QWCCR). By using this method, it may become possible for researchers to improve combustion and ignition characteristics of a modern internal combustion engine. Filling a plasma cavity with an appropriate dielectric medium can both alter electromagnetic properties and provide a suitable protective barrier to the harsh condition inside of a combustion cylinder. It is the purpose of this paper is to investigate both the operating frequency and quality factor of dielectric-filled cavities, as well as to suggest dielectrics that would be suitable for such an application.
Technical Paper

Investigation of Cold Start Capability of a Briggs and Stratton Engine Using Jet A Fuel and Microwave Plasma Ignition

2009-04-20
2009-01-1057
There is a growing interest in improving engine versatility through the capacity to run on more than one fuel. To aid in this effort, the research presented in this paper investigated a novel system using microwave plasma ignition designed with the goal of allowing standard gasoline engines to run on non-standard fuels. The fuel used was Jet A. The test engine was a Briggs and Stratton single cylinder engine outfitted with an aftermarket fuel injection system and the microwave plasma ignition system. The tests performed were to determine the cold-start temperature limit, the lowest temperature at which the engine could be repeatedly started, using microwave plasma ignition with a conventional spark plug as a reference. A detailed system outline is presented, as well as results and conclusions. Recommendations for further research are also suggested.
Technical Paper

Downwash Wake Reduction Investigation for Application on the V-22 “Osprey”

2003-09-08
2003-01-3020
The downwash of the prop-rotor blades of the Bell/Boeing V-22 “Osprey” in hover mode creates an undesirable negative lift on the wing of the aircraft. This downforce can be reduced through a number of methods. Neglecting all other effects, such as power requirements, this research investigated the feasibility of using circulation control, through blowing slots on the leading and trailing edge of the airfoil to reduce the wake profile under the wing. A model was built at West Virginia University (WVU) and tested in a Closed Loop Wind Tunnel. The airfoil was placed normal to the airflow using the tunnel air to simulate the vertical component of the downwash experienced in hover mode. The standard hover mode flap angle of 67 degrees was used throughout the testing covered in this paper. All of these tests were conducted at a free stream velocity of 59 fps, and the baseline downforce on the model was measured to be 5.45 lbs.
Technical Paper

The Coaxial Cavity Resonator as a RF IC Engine Ignition Source

2001-03-05
2001-01-0987
The Quarter Wave Coaxial Cavity Resonator (QWCCR) plasma igniter is designed, from previous theoretical work, as an ignition source for an internal combustion engine. The present research has explored the implementation of the QWCCR into an internal combustion (IC) engine. The QWCCR design parameters of inner conductor length, loop geometry, and loop position were varied for two igniters of differing operating frequency. Variations of the QWCCR radio frequency (RF) parameters, as a function of engine geometry, were studied by placing the igniter in a combustion chamber and manually varying the crank position. Three identical igniters were fitted with dielectric inserts and the parameters were studied before and after ignition was sustained in a twin-cylinder engine. Optimal resonator geometries were determined. Radio frequency parameter invariance was found with respect to crank angle and piston distance. The first successful IC engine ignition using a QWCCR was achieved.
Technical Paper

Piston Motion and Ignition Delay: Details on Coal-Based Fuel Injection and Effects of Mass Leakage

1990-02-01
900388
In a recent study the present authors showed that piston motion in a compression ignition engine can have a small yet significant effect on ignition delay of diesel fuel. In particular, sinusoidal piston motion, or a motion with high dwell near top-dead-center, promotes reduced delay and improved cold starting relative to conventional slider-crank piston motion. This paper extends the analysis to the case of coal-diesel and coal-methanol blends, using experimental data from the thesis available in the literature. Ignition delay was shown again to be reduced with sinusoidal motion. In addition, the effect of piston motion on mass loss was considered. As expected, higher dwell near top-dead-center caused more mass loss, but there is still benefit to ignition delay of unusual piston motions unless the coefficient of leakage past the rings is very large.
Technical Paper

Continued Computational Investigation into Circulation Control for the V-22 Osprey Download Reduction; Blowing Slot Optimization

2006-08-30
2006-01-2396
Previous studies have shown that using blowing slots can reduce the effects of the rotor downwash on the main wing of a tilt-rotor aircraft, particularly the V-22 Osprey. The current study investigates the placement and air velocity of the leading edge blowing slot for optimization of the download reduction. The realizable turbulent kinetic energy - rate of dissipation (rke) numerical model available in Fluent 6.2.12 was used to model the flow involved under the rotors and the subsequent downwash around the main wing. It was found that the leading edge blowing slot is most beneficial when it is placed just upwind of the separation point without blowing slots. In the current investigation the optimal configuration is found between 0 percent and 1 percent of the chord length.
Technical Paper

Basic Design of the Rand Cam Engine

1993-03-01
930062
The Rand Cam engine is a novel design which avoids the use of pistons in favor of a cavity of varying size and shape. A set of vanes protrudes from a rotor into a circular trough in a stator. The vanes seal to the walls and base of the trough, which is of varying depth, and progress around the trough with rotation of the rotor. These vanes therefore pass through the rotor and are constrained to move parallel to the rotational axis. Intake and exhaust processes occur through ports in the stator wall which are revealed by the passing vanes. Advantages of the basic design include an absence of valves, reduction in reciprocating masses, presence of an integral flywheel in the rotor and strong fluid movement akin a swirl induced by the relative velocity between the rotor and stator.
Technical Paper

RF Plasma Ignition System Concept for Lean Burn Internal Combustion Engines

1992-08-03
929416
This paper describes a Radio Frequency (RF) plasma ignitor concept intended for application to internal combustion engines. This system features a high Q quarter-wave coaxial cavity resonator, of simple construction, serving as a tuning element in the RF power supply, a voltage magnifier, and a discharge device attached to the combustion chamber. The resonator is filled with a dielectric and open at the discharge end. The center conductor is terminated with a revolute solid capacitive electrode which concentrates the associated electric field. This non-uniform electric field within the air/fuel mixture creates a corona discharge plasma which is excited at the RF operating frequency and the resulting ionic species recombine to initiate combustion. The RF excitation, relative to DC, reduces breakdown voltage and electrode degradation.
Technical Paper

Analysis of RF Corona Discharge Plasma Ignition

1992-08-03
929502
Corona discharge from a RF quarter wave coaxial cavity resonator is considered as a plasma ignition source for spark ignited (SI) internal combustion (IC) engines. The gaseous discharge processes associated with this device are analyzed using principles of gas kinetics and gaseous electronics, with assumed values for the electric field strength. Corona discharge occurs when the electric field shaped and concentrated by a single electrode exceeds the breakdown potential of the surrounding gas. Ambient electrons, naturally present due to ionizing radiation, drift in the direction of the externally applied field, gaining energy while undergoing elastic collisions with neutral molecules. After gaining sufficient energy they dissociate, excite, or ionize the neutral particles through inelastic collision, creating additional electrons. This process leads to avalanche electrical breakdown of the gas within about 10-8 sec.
Technical Paper

The Rand-Cam Engine: A Pistonless Four Stroke Engine

1994-03-01
940518
The Rand-Cam engine is a positive displacement machine, operating on a four stroke cycle, which consists of a rotor with multiple axial vanes forming combustion chambers as the rotor and vanes rotate in a cam shaped housing. The cam housing, consisting of two “half-housings” or stators, contains a toroidal trough of varying depth machined into each stator. The two stators are phased so that the shallowest point on one trough corresponds to the deepest on the other. A set of six vanes, able to move axially through machined holes in the rotor, traverses the troughs creating six captured zones per side. These zones vary in volume with rotor rotation. Since each trough has two deep sections and two shallow sections with ramps in between, full four stroke operation is obtained between each pair of vanes in each trough, corresponding to twelve power “strokes” per revolution.
Technical Paper

Hydrodynamic Mobility Analysis of the Vane Lift Mechanism for the Rand Cam™ Engine

1995-02-01
950450
In this paper, a new method for the hydro-dynamic analysis of a sliding cylinder in a fully lubricated parallel track is presented. The method is an extension of Booker's “Mobility Method” (developed for cylindrical journal bearings) to the case of sliding cylinders, in which the clearance between the track and the cylinder, the viscosity of the lubricant, the radius and length of the pin, the sliding velocity and the applied transverse load determine the hydrodynamic behavior of the cylinder. In the Rand Cam™ Engine [1]*, the axicycloidal motion of vanes is driven by a rotor and a cylindrical cam, and one of the alternative designs to provide this function is based on a cylindrical pin sliding within a track which follows the profile of the motion of the main cams of the engine. This function is very important for the engine, since it separates the load bearing function from the sealing function left to the apex-like seals.
Technical Paper

Maintenance Issues and Fail Safes of the Oculus Sensor Platform System

2005-10-03
2005-01-3427
When designing the Oculus sensor platform, many safety issues such as designing fail safes, adapting to flying situations, and examining situations produced by exposure to real-world conditions were taken into consideration. When predicting maintenance issues, environmental conditions that the platform will have to encounter were assessed. A material that was lightweight and strong enough to withstand the harsh environmental conditions experienced outside the C-130 aircraft was needed. In addition to the material used, another issue addressed was the ability to repair the platform easily and efficiently. Normal operations expose the components to significant wear and tear, which requires the replacement of parts to maintain safe operations. Oculus was constructed to allow for component replacement without deconstruction of the entire platform. While environmental factors were a concern, mechanical design and functionality, along with safety, was vital to the project.
Technical Paper

Experimental Stress/Strain Analysis of a Standardized Sensor Platform for a C-130 Aircraft

2005-10-03
2005-01-3426
Project Oculus is an in-flight deployable mechanical arm/pod system that will accommodate 500 pounds of sensor payload, developed for a C-130 military aircraft. The system is designed for use in counter narco-terrorism and surveillance applications by the Department of Defense and the National Guard [1]. A prototype of the system has been built and is in the testing/analysis phase. The purpose of this study was to analyze the actual stresses and strains in the critical areas found using previous Finite Element (FE) simulations and to ensure that acceptable safety requirements have been met. The system components tested will be redesigned, tested, and reconstructed in the case of unacceptable safety factors or if more reliable methods can be implemented. The system was built to be deployed and retracted in flight, to avoid causing any problems in take off and landing.
Technical Paper

Crash Analysis of a Command and Control System Deployed on the Rear Ramp of a C-130 Aircraft

2005-10-03
2005-01-3424
In order to prepare for flight on-board a military aircraft with an experimental prototype system, a crash scenario analysis was performed to ensure safety of the aircraft and its crew. The following describes the crash analysis of the Oculus sensor pallet system in preparation for a flight test on a C-130 aircraft. In this particular case, the two units were analyzed individually in accordance with the loading standards outlined in MIL-HDBK-1791. The unit that deploys outside of the rear cargo ramp of the aircraft (sensor platform) was analyzed more closely than the system that remains locked (operator station) into the rail system of the aircraft. As the results show, both systems are capable of being subjected to crash loading forces.
Technical Paper

Electromagnetic Compliance Issues of Project Oculus

2005-10-03
2005-01-3394
Project Oculus, an experimental configurable sensor platform for deploying airborne sensors on a C-130 aircraft, is currently in its pre-flight testing phase. The electronics driving the platform are available commercially off the shelf (COTS) and as such are not automatically rated to comply with stringent military electromagnetic standards as defined in MIL-STD-461. These COTS electronics include efficient switching power converters, variable frequency motor drives (VFD), and microprocessor based equipment, all of which can present electromagnetic interference (EMI) issues. Even in a design where EMI issues were not considered up front, it is often possible to bring the overall configuration into compliance. Switching and digital clock signals produce both conducted and radiated noise emissions. Long cable runs and enclosure apertures become noise transmitting antennas. Large switching currents place noise on the power lines causing interference with other equipment.
Technical Paper

Development of a Remote Sensor Deployment System for Expanded C4ISR Use of the C-130 Aircraft

2005-10-03
2005-01-3395
Enhancing the capabilities of established airframes to meet expanded mission requirements is preferential to the design of specialized aircraft. The high cost associated with the research and development of a specialized aircraft platform has shifted the concentration towards the modification of existing aircraft to support multiple C4ISR missions. The recently developed Oculus sensor deployment system is one such example of this trend, providing a fully integrated aerial visual enhancement platform with multi-mission capabilities. This paper provides a short survey of the Oculus sensor pallet system and overviews some of the multiple guidelines used which ensure that various remote sensing technologies may be securely and simultaneously deployed.
Technical Paper

Continued Computational Investigation into Circulation Control for the V-22 Osprey Download Reduction

2005-10-03
2005-01-3187
The commercially available RNG k-e turbulence model with enhanced wall treatment found in Fluent 6.1 was used to solve the flow over a V-22 Osprey wing equipped with blowing slots. The solutions were then compared to experimental data. Good correlation between the computational and experimental data was found. Download on the wing from the rotors while the aircraft is operating in vertical take-off and landing mode was found to be reduced by the blowing slots.
X