Refine Your Search

Search Results

Viewing 1 to 4 of 4
Technical Paper

Dynamic Modeling of the Stiller-Smith Mechanism in an Application of a 4-Cylinder Plunger Pump System

1991-02-01
910073
The development of a mathematical model of StillerSmith Mechanism for the application of a 4-cylinder plunger pump system is presented. The magnitude and direction of the internal dynamic load are obtained by solving a set of equations using the overall geometric parameters, prescribed motions, inertia distribution, and applied torques on the system. The simulation presented here yields the history of the internal loads, which are then normalized with respect to the required peak output load on the plungers, through an entire rotary cycle. The approach allows for the development of further design criteria through parametric sensitivity studies.
Technical Paper

Rotary Engines – A Concept Review

2003-10-27
2003-01-3206
The basic design of a purely rotary motion engine has potentially many advantages over the conventional piston-crank internal combustion engine. Although only one rotary engine has been successfully placed into production, rotary mechanisms still show promise in the market place. A comprehensive review of rotary engine concepts is presented with an emphasis placed on the last 30 years. Suggestions are made as to where research concentrations should be placed to improve the progress of a rotary engine.
Technical Paper

Hydrodynamic Mobility Analysis of the Vane Lift Mechanism for the Rand Cam™ Engine

1995-02-01
950450
In this paper, a new method for the hydro-dynamic analysis of a sliding cylinder in a fully lubricated parallel track is presented. The method is an extension of Booker's “Mobility Method” (developed for cylindrical journal bearings) to the case of sliding cylinders, in which the clearance between the track and the cylinder, the viscosity of the lubricant, the radius and length of the pin, the sliding velocity and the applied transverse load determine the hydrodynamic behavior of the cylinder. In the Rand Cam™ Engine [1]*, the axicycloidal motion of vanes is driven by a rotor and a cylindrical cam, and one of the alternative designs to provide this function is based on a cylindrical pin sliding within a track which follows the profile of the motion of the main cams of the engine. This function is very important for the engine, since it separates the load bearing function from the sealing function left to the apex-like seals.
Technical Paper

Low-Heat Rejection Engines — A Concept Review

1988-02-01
880014
A comprehensive review of low-heat rejection engine concepts is presented. Areas examined include the materials being considered for these engines; fuels including coal; the effects of high temperature upon emissions; tribology with ceramics; exhaust heat utilization systems; and applications of these engines. Inconsistencies in the literature arc discussed.
X