Refine Your Search

Topic

Search Results

Technical Paper

A Simple Physical Model of ICE Mechanical Losses

2011-04-12
2011-01-0610
The current state-of-the-art offers two extremes of engine mechanical loss models: pure empirical models, using, e.g., regression models based on experimental results, and full-sized 3-D hydrodynamic friction models, solving Reynolds-like lubrication equations for complicated geometry of piston ring/cylinder liner or load-distorted shapes of crankshaft/connecting rod bearings and journals. Obviously, the former method cannot be reliably extrapolated while the latter is too complicated, especially for the early stage of design. The aim of the current paper is describing the development and experimental calibration of the physical cranktrain model for FMEP prediction, based on simplified phenomenological model of mixed friction. The model uses simply defined shapes of Stribeck curves (friction coefficient) in dependence on Sommerfeld number, i.e., on effective sliding velocity, oil viscosity, dimension scaling factor and the normal force load.
Technical Paper

Calibration and Results of a Radial Turbine 1-D Model with Distributed Parameters

2011-04-12
2011-01-1146
The physical 1-D model of a radial turbine consists in a set of gas ducts featuring total pressure and/or temperature changes and losses. This model has been developed using the basic modules of generalized 1-D manifold solver. The tools for it were presented at SAE 2008 and 2009 World Congresses. The model published before is amended by a semi-empiric mechanical loss and windage loss modules. The instantaneous power of a turbine is integrated along the rotating impeller channel using Euler turbine theorem, which respects the local unsteadiness of mass flow rate along the channel. The main aim of the current contribution is to demonstrate the use of measured turbine maps for calibration of unsteady turbine model for different lay-outs of turbine blade cascades. It is important for VG turbines for the optimal matching to different engine speeds and loads requirements.
Journal Article

Study of Pressure Wave Supercharger Potential using a 1-D and a 0-D Approach

2011-04-12
2011-01-1143
The objective of this paper is to complete a thorough investigation of the pressure wave supercharger (PWS) to explore the potential of this technology in engine applications. The PWS is a non-steady flow device that uses shock waves to pressurize fluids by transferring energy from a high-pressure flow to a low-pressure flow without separation by physical walls. The paper introduces a 1-D model of PWS in GT-SUITE calibrated by experiments on steady flow test rig. The 1-D model respects both exhaust and fresh air in each of the cells, friction and heat transfer in the cells as well as the continual opening and closing of the cells. Moreover, the cell wall temperature is computed and the leakage flow between the cells and housings modeled. The limits of PWS operation regarding pressures, temperatures and mass flows are first mapped on the virtual test rig utilizing the calibrated 1-D code based on the Mazda Comprex device.
Technical Paper

1-D Model of Roots Type Supercharger

2013-04-08
2013-01-0927
This paper introduces research work on 1-D model of Roots type supercharger with helical gears using 1-D simulation tool. Today, passenger car engine design follows approach of downsizing and the reduction of number of engine cylinders. Superchargers alone or their combination with turbochargers can fulfill low-end demands on engine torque for such engines. Moreover, low temperature combustion of lean mixture at low engine loads becomes popular (HCCI, PCCI) requiring high boost pressure of EGR/fresh air mixture at low exhaust gas temperature, which poses too high demands on turbocharger efficiency. The main objective of this paper is to describe Roots charger features and to amend Roots charger design.
Technical Paper

LES Simulation of Flame Propagation in a Direct-Injection SI-Engine to Identify the Causes of Cycle-to-Cycle Combustion Variations

2013-04-08
2013-01-1084
A Large-Eddy-Simulation (LES) approach is applied to the calculation of multiple SI-engine cycles in order to study the causes of cycle-to-cycle combustion variations. The single-cylinder research engine adopted in the present study is equipped with direct fuel-injection and variable valve timing for both the intake and exhaust side. Operating conditions representing cases with considerably different scatter of the in-cylinder pressure traces are selected to investigate the causes of the cycle-to-cycle combustion variations. In the simulation the engine is represented by a coupled 1D/3D-CFD model, with the combustion chamber and the intake/exhaust ports modeled in 3D-CFD, and the intake/exhaust pipework set-up adopting a 1D-CFD approach. The adopted LES flow model is based upon the well-established Smagorinsky approach. Simulation of the fuel spray propagation process is based upon the discrete droplet model.
Technical Paper

Combining Thermodynamics and Design Optimization for Finding ICE Downsizing Limits

2014-04-01
2014-01-1098
The mass and overall dimensions of massively downsized engines for very high bmep (up to 35 bar) cannot be estimated by scaling of designs already available. Simulation methods coupling different levels of method profoundness, as 1-D methods, e.g., GT Suite/GT Power with in-house codes for engine mechanical efficiency assessment and preliminary design of boosting devices (a virtual compressor and a turbine), were used together with optimization codes based on genetic algorithms. Simultaneously, the impact of optimum cycle on cranktrain components dimensions (especially cylinder bore spacing), mass and inertia force loads were estimated since the results were systematically stored and analyzed in Design Assistance System DASY, developed by the authors for purposes of early-stage conceptual design. General thermodynamic cycles were defined by limiting parameters (bmep, burning duration, engine speed and turbocharger efficiency only).
Technical Paper

Air System Conception for a Downsized Two-Stroke Diesel Engine

2012-04-16
2012-01-0831
This paper introduces a research work on the air loop system for a downsized two-stroke two-cylinder diesel engine conducted in framework of the European project dealing with the POWERtrain for Future Light-duty vehicles - POWERFUL. The main objective was to determine requirements on the air management including the engine intake and exhaust system, boosting devices and the EGR system and to select the best possible technical solution. With respect to the power target of 45 kW and scavenging demands of the two-cylinder two-stroke engine with a displacement of 0.73 l, a two-stage boosting architecture was required. Further, to allow engine scavenging at any operation, supercharger had to be integrated in the air loop. Various air loop system layouts and concepts were assessed based on the 1-D steady state simulation at full and part load with respect to the fuel consumption.
Technical Paper

Design Assistance System and Its Application

2012-04-16
2012-01-0916
This article presents results of the Design Assistance System (DASY, will be referred to as a tool in this paper) development and examples of its application for engine concept modeling. The software tool for creating and maintaining knowledge database is being developed at the Czech Technical University in Prague. This tool is targeted to simplify and speed up the concept design process. The targets were met by providing the high level of flexibility along with a simple user interface. Two examples that show interaction of this tool with computer-aided design (CAD) and computer-aided engineering (CAE) software are presented. One example includes an optimization using implemented genetic algorithm. By using this tool, one can create templates for conserving the knowledge acquired during engine design in the past. It provides hints for the future design tasks by offering a data of similar designs, based on experiments and simulations at different levels of complexity and profoundness.
Technical Paper

System Optimization for a 2-Stroke Diesel Engine with a Turbo Super Configuration Supporting Fuel Economy Improvement of Next Generation Engines

2014-11-11
2014-32-0011
The objective of this paper is to present the results of the GT Power calibration with engine test results of the air loop system technology down selection described in the SAE Paper No. 2012-01-0831. Two specific boosting systems were identified as the preferred path forward: (1) Super-turbo with two speed Roots type supercharger, (2) Super-turbo with centrifugal mechanical compressor and CVT transmission both downstream a Fixed Geometry Turbine. The initial performance validation of the boosting hardware in the gas stand and the calibration of the GT Power model developed is described. The calibration leverages data coming from the tests on a 2 cylinder 2-stroke 0.73L diesel engine. The initial flow bench results suggested the need for a revision of the turbo matching due to the big gap in performance between predicted maps and real data. This activity was performed using Honeywell turbocharger solutions spacing from fixed geometry waste gate to variable nozzle turbo (VNT).
Technical Paper

Simulation of Pulsating Flow Unsteady Operation of a Turbocharger Radial Turbine

2008-04-14
2008-01-0295
The aim of the current contribution is to develop a tool for the improvement of accuracy of turbocharger turbine simulation during matching of a turbocharger to an engine. The paper demonstrates the possibility of unsteady turbine simulation in pulsating flow caused by an internal combustion engine using the basic modules of generalized 1-D manifold solver with entities (pipes, channels) under centrifugal acceleration in general direction and under non-uniform angular speed, which has not yet been explored. The developed model extrapolates steady operation turbine maps by this way. It uses 1-D model parameters identified from steady flow experiments. Unlike the lumped-parameter standard models of turbocharger turbines, the model takes into account complete 1-D features of a turbine flow path including arbitrary shape of turbine impeller vanes.
Technical Paper

Transient Engine Model as a Tool for Predictive Control

2006-04-03
2006-01-0659
The paper describes the tool of ICE transient response simulation suitable for incorporation into a predictive engine controller. The model is simplified, thus enhancing the simulation speed but keeping its predictive capability at a reasonable level. The main modules of a code suitable for the near-real-time simulation of engine thermodynamics are described in the paper. They include engine cylinder (incl. simplified pressure trace prediction), fuel injection system, main controllers, both inlet and exhaust manifolds, turbocharger and engine dynamics. The laws of conservation are used to describe any of the thermodynamic/hydrodynamic modules of a model. The method of algebraic re-construction of a pressure trace inside a cylinder has been developed and tested for prediction of engine speed variation. The modular structure of a model allows for the implementation of the current operating principles of ICEs.
Technical Paper

New Approach to Turbocharger Optimization using 1-D Simulation Tools

2006-04-03
2006-01-0438
The paper deals with the investigation of turbocharger optimization procedures using amended 1-D simulation tools. The proposed method uses scaled flow rate/effficiency maps for different sizes of a radial turbine together with a fictitious compressor map. The compressor pressure ratio/efficiency map depends on compressor circumference velocity only and predicts the both compressor specific power and achievable efficiency. At the first stage of optimization, it avoids the problems of reaching choking/surge limits. It enables the designer to find a suitable turbine type under realistic unsteady conditions (pressure pulses in exhaust manifold) concerning turbine flow area. Once the optimization of turbine/compressor impeller diameters is finished, the specific compressor map is selected. The proposed method provides the fast way to the best solution even for the case of a VGT turbine. Additional features have been developed for the representation of scaled turbine and compressor maps.
Technical Paper

Multilevel Predictive Models of IC Engine for Model Predictive Control Implementation

2008-04-14
2008-01-0209
The paper deals with model based predictive control of combustion engines. Nonlinear black-box predictive models based on neuro-fuzzy approach are utilized. The structure of the models is optimized within an identification process. The nonlinear models are locally linearized and consequently used for the efficient on-line computation of forthcoming control actions. In desire to respect a fact that the speed of input-output response may vary significantly for different input/output groups, multilevel predictive models are proposed. Predictive control is again applied to approximate the desired behavior of chosen output variables. Potential algebraical constraints between different prediction layers are involved in the control algorithm using quadratic programming. The control scheme is optimized using simplified fast simulation model.
Technical Paper

Investigation of Radial Turbocharger Turbine Characteristics under Real Conditions

2009-04-20
2009-01-0311
The paper deals with investigation of flow characteristics of turbocharger turbine under real operating conditions on engine by means of combination of experimental data and advanced 1-D code for combustion engine simulation. Coupling simulations tools with the results of measurements provides the engineers with data which are difficult or impossible to measure. For instance by means of a three pressure analysis (TPA) applicable on engine cylinder the engineers can obtain burn rate, valve flow and residual gas compound from measured pressure traces in cylinder and at inlet and outlet ports. A method for turbocharger turbine on engine identification similar in principle to the three pressure analysis has been applied on radial turbine with variable geometry. A new computational module has been developed to allow identification of instantaneous flow and efficiency characteristics of the turbine.
Journal Article

Comparison of Lumped and Unsteady 1-D Models for Simulation of a Radial Turbine

2009-04-20
2009-01-0303
The physical 1-D model of a radial turbine consists of a set of gas ducts featuring total pressure and/or temperature changes and losses. Therefore, the wave propagation and filling/emptying plays a significant role if a turbine is subjected to unsteady gas flow. The results of unsteady turbine simulation using the basic modules of generalized 1-D manifold solver in GT Power are demonstrated. The turbine model calibration parameters can be identified by means of 1-D steady model used in optimization code loop. The examples of model results are compared to steady flow map predictions of turbine efficiency and engine pumping loop work. The model may be used for prediction of turbine data in out-of-design points as presented in the paper. The other important role of a model, however, is an accurate evaluation of turbine parameters from pressure and speed measurements at an engine in operation.
Technical Paper

Simulation of a COMPREX® Pressure Exchanger in a 1-D Code

2004-03-08
2004-01-1000
The paper describes techniques used for optimization of timing, shaping and control of pressure wave exchangers including the prediction of pressure-flow rate characteristics of these devices. BBC Baden and ETH Zürich originally proposed them in 60's using the direct pressure exchange between exhaust gas and fresh air in a narrow channel (the COMPREX® device). A technique allowing COMPREX® pressure exchanger to be simulated in detail in a commercially available 1-D cycle simulation tool has been developed. Before the design of a specific exchanger is started the layout must be carefully optimized concerning distribution gear for both fresh air and exhaust gas. Simulation facilities provided by advanced 1-D codes like GT-Power from Gamma Technologies create a valuable tool to do this task and to find alternative design solutions.
Technical Paper

Computer Aided Configuration Design of Internal Combustion Engines - CED System

2002-03-04
2002-01-0903
The paper describes patterns of algorithms for different innovative levels of design at parametric, configuration and conceptual levels. They can be applied to Computer-aided Engine Design (CED). Data structures, process simulation hierarchy, used modules of engine simulation and needs for their further development are described. An example of advanced thermodynamics modeling of combustion engines is included.
Technical Paper

Fuel Injection Process Computations Using the Eulerian Multidimensional Model

2005-04-11
2005-01-1243
Diesel fuel injection process calculations have been performed by means of in-house developed mathematical models. An Eulerian multidimensional code for in-cylinder two-phase flow computations is used in conjunction with a hydrodynamic one-dimensional model of a fuel injection system. The multidimensional model comprehends all basic processes, which play a role in spray formation. The compressible gaseous flow with transport of species is solved together with the flow of dispersed liquid phase using the Eulerian reference frame for both phases. The two-way coupling between the phases in mass, momentum, and energy balances is considered. A detailed description of liquid phase is present, taking into account drop size distribution in terms of the multi-continua approach. The hydrodynamic model capable of simulating common fuel injection systems is used for the rate-of-injection computations to provide realistic boundary conditions to the spray model.
Technical Paper

Simulation of Pre-Chambers in an Engine Combustion Chamber Using Available Software

2003-03-03
2003-01-0373
The presented work deals with possibilities of modeling divided combustion chamber using available 1-D/0-D software. It is usable for indirect injection diesel engines, gas SI engines with pre-chambers for very lean mixture ignition, etc. The model solves all layouts where main cylinder is connected to additional volumes. This connection allows for heat and energy transfer between connected parts. The application of standard ROHR functions (Wiebe, etc.) which are normalized to constant fuel mass is limited. A new marker gas concentration algorithm is proposed for the use of empiric ROHR functions. The standard approach (without proposed algorithm) was tested modeling large-bore gas SI engine with pre-chamber where the mixture is ignited and experimental direct injection hydrogen one-cylinder engine with an additional volume between fuel injector and the cylinder itself to protect the injector from very high pressures and temperatures in the cylinder.
Technical Paper

Application of Advanced Simulation Methods and Their Combination with Experiments to Modeling of Hydrogen Fueled Engine Emission Potentials

2002-03-04
2002-01-0373
The paper deals with an application of advanced simulation methods to modeling of hydrogen fueled engines. Two models have been applied - 0-D algorithm and CFD. The 0-D model has been based on GT-Power code. The CFD model has been based on Advanced Multizone Eulerian Model representing general method of finite volume. The influence of main engine parameters, e.g. air excess, spark timing, compression ratio, on NOx formation and engine efficiency has been investigated. Both models have been calibrated with experimental data. Examples of results and comparison with experiments are shown. The means of reducing NOx formation are discussed.
X