Refine Your Search

Search Results

Viewing 1 to 12 of 12
Journal Article

Modeling the Cold Start of the Ford 3.5L V6 EcoBoost Engine

2009-04-20
2009-01-1493
Optimization of the engine cold start is critical for gasoline direct injection (GDI) engines to meet increasingly stringent emission regulations, since the emissions during the first 20 seconds of the cold start constitute more than 80% of the hydrocarbon (HC) emissions for the entire EPA FTP75 drive cycle. However, Direct Injection Spark Ignition (DISI) engine cold start optimization is very challenging due to the rapidly changing engine speed, cold thermal environment and low cranking fuel pressure. One approach to reduce HC emissions for DISI engines is to adopt retarded spark so that engines generate high heat fluxes for faster catalyst light-off during the cold idle. This approach typically degrades the engine combustion stability and presents additional challenges to the engine cold start. This paper describes a CFD modeling based approach to address these challenges for the Ford 3.5L V6 EcoBoost engine cold start.
Journal Article

Spray Pattern Optimization for the Duratec 3.5L EcoBoost Engine

2009-06-15
2009-01-1916
A systematic methodology has been employed to develop the Duratec 3.5L EcoBoost combustion system, with focus on the optimization of the combustion system including injector spray pattern, intake port design, piston geometry, cylinder head geometry. The development methodology was led by CFD (Computational Fluid Dynamics) modeling together with a testing program that uses optical, single-cylinder, and multi-cylinder engines. The current study shows the effect of several spray patterns on air-fuel mixing, in-cylinder flow development, surface wetting, and turbulence intensity. A few sets of injector spray patterns are studied; some that have a wide total cone angle, some that have a narrow cone angle and a couple of optimized injector spray patterns. The effect of the spray pattern at part load, full load and cold start operation was investigated and the methodology for choosing an optimized injector is presented.
Journal Article

Applications of CFD Modeling in GDI Engine Piston Optimization

2009-06-15
2009-01-1936
This paper describes a CFD modeling based approach to address design challenges in GDI (gasoline direct injection) engine combustion system development. A Ford in-house developed CFD code MESIM (Multi-dimensional Engine Simulation) was applied to the study. Gasoline fuel is multi-component in nature and behaves very differently from the single component fuel representation under various operating conditions. A multi-component fuel model has been developed and is incorporated in MESIM code. To apply the model in engine simulations, a multi-component fuel recipe that represents the vaporization characteristics of gasoline is also developed using a numerical model that simulates the ASTM D86 fuel distillation experimental procedure. The effect of the multi-component model on the fuel air mixture preparations under different engine conditions is investigated. The modeling approach is applied to guide the GDI engine piston designs.
Journal Article

Development and Optimization of the Ford 3.5L V6 EcoBoost Combustion System

2009-04-20
2009-01-1494
Recently, Ford Motor Company announced the introduction of EcoBoost engines in its Ford, Lincoln and Mercury vehicles as an affordable fuel-saving option to millions of its customers. The EcoBoost engine is planned to start production in June of 2009 in the Lincoln MKS. The EcoBoost engine integrates direct fuel injection with turbocharging to significantly improve fuel economy via engine downsizing. An application of this technology bundle into a 3.5L V6 engine delivers up to 12% better drive cycle fuel economy and 15% lower emissions with comparable torque and power as a 5.4L V8 PFI engine. Combustion system performance is key to the success of the EcoBoost engine. A systematic methodology has been employed to develop the EcoBoost engine combustion system.
Technical Paper

3D CFD Upfront Optimization of the In-Cylinder Flow of the 3.5L V6 EcoBoost Engine

2009-04-20
2009-01-1492
This paper presents part of the analytical work performed for the development and optimization of the 3.5L EcoBoost combustion system from Ford Motor Company. The 3.5L EcoBoost combustion system is a direct injected twin turbocharged combustion system employing side-mounted multi-hole injectors. Upfront 3D CFD, employing a Ford proprietary KIVA-based code, was extensively used in the combustion system development and optimization phases. This paper presents the effect of intake port design with various levels of tumble motion on the combustion system characteristics. A high tumble intake port design enforces a well-organized stable motion that results in higher turbulence intensity in the cylinder that in turn leads to faster burn rates, a more stable combustion and less fuel enrichment requirement at full load.
Technical Paper

Combustion Improvement of a Light Stratified-Charge Direct Injection Engine

2004-03-08
2004-01-0546
In the effort to improve combustion of a Light-load Stratified-Charge Direct-Injection (LSCDI) combustion system, CFD modeling, together with optical engine diagnostics and single cylinder engine testing, was applied to resolve some key technical issues. The issues associated with stratified-charge (SC) operation are combustion stability, smoke emission, and NOx emission. The challenges at homogeneous-charge operation include fuel-air mixing homogeneity at partial load operation, smoke emission and mixing homogeneity at low speed WOT, and engine knock tendency reduction at medium speed WOT operations. In SC operation, the fuel consumption is constrained with the acceptable smoke emission level and stability limit. With the optimization of piston design and injector specification, the smoke emission can be reduced. Concurrently, the combustion stability window and fuel consumption can be also significantly improved.
Technical Paper

Development and Analysis of a Spray-Guided DISI Combustion System Concept

2003-10-27
2003-01-3105
An innovative stratified-charge DISI combustion concept has been developed using a mixture formation method referred to as Vortex Induced Stratification Combustion (VISC). This paper describes the combustion system concept and an initial assessment of it, performed on a single-cylinder test engine and through CFD modeling. This VISC concept utilizes the vortex naturally formed on the outside of a wide spray cone that is enhanced by bulk gas flow control and piston crown design. This vortex transports fuel vapor from the spray cone to the spark gap. This system allows a late injection timing and produces a well-confined mixture, which together provide an improved compromise between combustion phasing and combustion efficiency over typical wall-guided systems. Testing results indicate an 18% fuel consumption reduction, compared with a baseline PFI engine, over a drive cycle (neglecting cold start and transient effects).
Technical Paper

Fuel-Air Mixing Homogeneity and Performance Improvements of a Stratified-Charge DISI Combustion System

2002-10-21
2002-01-2656
A CFD based design optimization methodology was developed and adopted to the development of a stratified-charge direct-injection spark ignition (DISI) combustion system. Two key important issues for homogeneous charge operation, volumetric efficiency and mixing homogeneity, are addressed. The intake port is optimized for improved volumetric efficiency with a CFD based numerical optimization tool. It is found that insufficient fuel-air mixing is the root cause for the low rated power of most DISI engines. The fuel-air mixing in-homogeneity is due to the interaction between intake flow and injected fuel spray. An injector mask design was proposed to alleviate such interaction, then to improve air-fuel mixture homogeneity. It was then confirmed with dynamometer testing that the optimized design improved engine output and at the same time had lower soot and CO emissions.
Technical Paper

Understanding of Intake Cam Phasing Effects on the Induction and Fuel-Air Mixing in a DISI Engine

2004-06-08
2004-01-1947
Variable Cam Timing (VCT) has been proven to be a very effective method in PFI (Port Fuel Injection) engines for improved fuel economy and combustion stability, and reduced emissions. In DISI (Direct Injection Spark Ignition) engines, VCT is applied in both stratified-charge and homogeneous charge operating modes. In stratified-charge mode, VCT is used to reduce NOx emission and improve combustion stability. In homogeneous charge mode, the function of VCT is similar to that in PFI engines. In DISI engine, however, the VCT also affects the available fuel-air mixing time. This paper focuses on VCT effects on the induction process and the fuel-air mixing homogeneity in a DISI engine. The detailed induction process with large exhaust-intake valve overlap has been investigated with CFD modeling. Seven characteristic sub-processes during the induction have been identified. The associated mechanism for each sub-process is also investigated.
Technical Paper

Effect of Compression Ratio on Stratified-Charge Direct- Injection Gasoline Combustion

2005-04-11
2005-01-0100
Charge cooling due to fuel evaporation in a direct-injection spark-ignition (DISI) engine typically allows for an increased compression ratio relative to port fuel injection (PFI) engines. It is clear that this results in a thermal efficiency improvement at part load for homogenous-charge DISI engines. However, very little is known regarding the effect of compression ratio on stratified charge operation. In this investigation, DISI combustion data have been collected on a single cylinder engine equipped with a variable compression ratio feature. The results of experiments performed in stratified-charge direct injection (SCDI) mode show that despite its over-advanced phasing, thermal conversion efficiency improves with higher compression ratios. This benefit is quantified and dissected through an efficiency analysis. Furthermore, since the engine was equipped with both wall-guided DI and PFI systems, direct comparisons are made at part load for fuel consumption and emissions.
Journal Article

A Novel Technique for Measuring Cycle-Resolved Cold Start Emissions Applied to a Gasoline Turbocharged Direct Injection Engine

2020-04-14
2020-01-0312
There is keen interest in understanding the origins of engine-out unburned hydrocarbons emitted during SI engine cold start. This is especially true for the first few firing cycles, which can contribute disproportionately to the total emissions measured over standard drive cycles such as the US Federal Test Procedure (FTP). This study reports on the development of a novel methodology for capturing and quantifying unburned hydrocarbon emissions (HC), CO, and CO2 on a cycle-by-cycle basis during an engine cold start. The method was demonstrated by applying it to a 4 cylinder 2 liter GTDI (Gasoline Turbocharged Direct Injection) engine for cold start conditions at an ambient temperature of 22°C. For this technique, the entirety of the engine exhaust gas was captured for a predetermined number of firing cycles.
Journal Article

Quantitative Analysis of Gasoline Direct Injection Engine Emissions for the First 5 Firing Cycles of Cold Start

2021-04-06
2021-01-0536
A series of cold start experiments using a 2.0 liter gasoline turbocharged direct injection (GTDI) engine with custom controls and calibration were carried out using gasoline and iso-pentane fuels, to obtain the cold start emissions profiles for the first 5 firing cycles at an ambient temperature of 22°C. The exhaust gases, both emitted during the cold start firing and emitted during the cranking process right after the firing, were captured, and unburned hydrocarbon emissions (HC), CO, and CO2 on a cycle-by-cycle basis during an engine cold start were analyzed and quantified. The HCs emitted during gasoline-fueled cold starts was found to reduce significantly as the engine cycle increased, while CO and CO2 emissions were found to stay consistent for each cycle. Crankcase ventilation into the intake manifold through the positive-crankcase ventilation (PCV) valve system was found to have little effect on the emissions results.
X