Refine Your Search

Topic

Author

Search Results

Technical Paper

The Effects of Fuel Temperature on a Direct Injection Gasoline Spray in a Constant Volume Chamber

2003-05-19
2003-01-1810
Fuel temperature in the injector of small direct injection gasoline engine is high. On some conditions it is higher than saturated temperature. Over saturated temperature spray characteristics greatly change. In order to predict in-cylinder phenomena accurately, it is important to understand spray behavior and mixture process above saturated temperature. Therefore spray shape, mixture formation process and Sauter mean radius were (SMR) measured in a constant volume chamber. And based on the measurement result initial spray boundary conditions were arranged so that spray characteristics over saturated temperature could be represented by using CFD code KIVA-3[1]. Moreover KIVA-3 code was combined with detailed chemical kinetics code Chemkin II to predict combustion products. [2] Calculated combustion process was validated with visualization of chemiluminescence. As a result, spray shape and penetration length have good agreement with measured ones for each fuel temperature.
Technical Paper

The Effect of Intake, Injection Parameters and Fuel Properties on Diesel Combustion and Emissions

2003-05-19
2003-01-1793
To improve urban air pollution, stringent emissions regulations for heavy-duty diesel engines have been proposed and will become effective in Japan, the EU, and the United States in a few years. To comply with such future regulations, it is critical to investigate the effects of intake and injection parameters and fuel properties on engine performance, efficiency and emissions characteristics, associated with the use of aftertreatment systems. An experimental study was carried out to identify such effects. In addition, the KIVA-3 code was used to gain insight into cylinder events. The results showed improvements in NOx-Smoke and BSFC trade-offs at high-pressure injection in conjunction with EGR and supercharging.
Technical Paper

Mixture formation and combustion characteristics of directly injected LPG spray

2003-05-19
2003-01-1917
It has been recognized that alternative fuels such as liquid petroleum gas (LPG) has less polluting combustion characteristics than diesel fuel. Direct-injection stratified-charge combustion LPG engines with spark-ignition can potentially replace conventional diesel engines by achieving a more efficient combustion with less pollution. However, there are many unknowns regarding LPG spray mixture formation and combustion in the engine cylinder thus making the development of high-efficiency LPG engines difficult. In this study, LPG was injected into a high pressure and temperature atmosphere inside a constant volume chamber to reproduce the stratification processes in the engine cylinder. The spray was made to hit an impingement wall with a similar profile as a piston bowl. Spray images were taken using the Schlieren and laser induced fluorescence (LIF) method to analyze spray penetration and evaporation characteristics.
Technical Paper

Numerical Study on Iso-Octane Homogeneous Charge Compression Ignition

2003-05-19
2003-01-1820
A numerical study was carried out to investigate auto-ignition characteristics during HCCI predicted by using zero and multi-dimensional models combined with detailed kinetics including 116 chemical species and 689 elementary reactions involving iso-octane. In the simulation, homogeneous charge compression ignition of the fuel was analyzed under the same conditions as encountered in internal combustion engines. The results elucidated the combustible region and oxidation process of iso-octane with the formation and destruction of various chemical species in the cylinder.
Technical Paper

Predicting Exhaust Emissions in a Glow-Assisted DI Methanol Engine Using a Combustion Model Combined with Full Kinetics

1996-10-01
961935
A numerical model has been developed to predict the formation of NOx and formaldehyde in the combustion and post-combustion zones of a methanol DI engine. For this purpose, a methanol-air mixture model combined with a full kinetics model has been introduced, taking into account 39 species with their 157 related elementary reactions. Through these kinetic simulations, a concept is proposed for optimizing methanol combustion and reducing exhaust emissions.
Technical Paper

Simulating Exhaust Emissions Characteristics and Their Improvements in a Glow-Assisted DI Methanol Engine Using Combustion Models Combined with Detailed Kinetics

1997-05-01
971598
An experimental and numerical study has been conducted on the emission and reduction of HCHO (formaldehyde) and other pollutants formed in the cylinder of a direct-injection diesel engine fueled by methanol. Engine tests were performed under a variety of intake conditions including throttling, heating, and EGR (exhaust gas recirculation) for the purpose of improving these emissions by changing gas compositions and combustion temperatures in the cylinder. Moreover, a detailed kinetics model was developed and applied to methanol combustion to investigate HCHO formation and the reduction mechanism influenced by associated elementary reactions and in-cylinder mixing.
Technical Paper

Controlling Combustion Characteristics Using a Slit Nozzle in a Direct-Injection Methanol Engine

1994-10-01
941909
A new type of fuel injection nozzle, called a “slit nozzle,” has been developed to improve poor ignitability and to stabilize combustion under low load conditions in direct-injection methanol diesel engines manufactured for medium-duty trucks. This nozzle has a single oblong vent like a slit. Engine test results indicate that the slit nozzle can improve combustion and thermal efficiency, especially at low loads and no load. This can be explained by the fact that the slit nozzle forms a more highly concentrated methanol spray around the glow-plug than do multi-hole nozzles. As a result, this nozzle improves flame propagation.
Technical Paper

3-D CFD Analysis of CO Formation in Diesel Combustion - The use of intake air throttling to create reducing atmospheres for NSR catalysts -

2011-08-30
2011-01-1841
The efficiency of the NOx Storage and Reduction (NSR) catalysts used in the aftertreatment of diesel engine exhaust gases can potentially be increased by using reactive reductants such as CO and H₂ that are formed during in-cylinder combustion. In this study, a multi-dimensional computational fluid dynamics (CFD) code coupled with complex chemical analysis was used to study combustion with various fuel after-injection patterns. The results obtained will be useful in designing fuel injection strategies for the efficient formation of CO.
Technical Paper

Modeling of Diesel Engine Components for Model-Based Control (Second Report): Prediction of Combustion with High Speed Calculation Diesel Combustion Model

2011-08-30
2011-01-2044
This paper describes the development of a High Speed Calculation Diesel Combustion Model that predicts combustion-related behaviors of diesel engines from passenger cars. Its output is dependent on the engine's operating parameters and on input from on-board pressure and temperature sensors. The model was found to be capable of predicting the engine's in-cylinder pressure, rate of heat release, and NOx emissions with a high degree of accuracy under a wide range of operating conditions at a reasonable computational cost. The construction of this model represents an important preliminary step towards the development of an integrated Model Based Control system for controlling combustion in diesel engines used in passenger cars.
Technical Paper

Modeling of Diesel Engine Components for Model-Based Control (First Report): The construction and validation of a model of the Air Intake System

2011-08-30
2011-01-2066
Model based control design is an important method for optimizing engine operating conditions so as to simultaneously improve engines' thermal efficiency and emission profiles. Modeling of intake system that includes an intake throttle valve, an EGR valve and a variable geometry turbocharger was constructed based on conservation laws combined with maps. Calculated results were examined the predictive accuracy of fresh charge mass flow, EGR rate and boost pressure.
Technical Paper

Study on Burning Velocity of LPG Fuel in a Constant Volume Combustion Chamber and an SI Engine

2010-04-12
2010-01-0614
Compared with petroleum fuel, liquefied petroleum gas (LPG) demonstrates advantages in low CO₂ emission. This is because of propane (C₃H₈), n-butane (n-C₄H₁₀) and i-butane (i-C₄H₁₀), which are the main components of LPG, making H/C ratio higher. In addition, LPG is suitable for high efficient operation of a spark ignition (SI) engine due to its higher research octane number (RON). Because of these advantages, that is, diversity of energy source and reduction of CO₂, in the past several years, LPG vehicles have widely been used as the alternate gasoline vehicles all over the world. Consequently, it is absolutely essential for the performance increase in LPG vehicles to comprehend combustion characteristics of LPG. In this study, the differences of laminar burning velocity between C₃H₈, n-C4H10, i-C₄H₁₀ and regular gasoline were evaluated experimentally with the use of a constant volume combustion chamber (CVCC).
Technical Paper

Detailed Analysis of Particulate Matter Emitted from Biofueled Diesel Combustion with High EGR

2009-04-20
2009-01-0483
Difference of engine combustion characteristics, species and amount of exhaust gas and PM (particulate matter consisted of SOF and Soot and Ash), and especially PM oxidation characteristics were studied when diesel fuel or bio-fuel, here PME (palm oil methyl ester) as an example, was used as a fuel. The fueling rate was adjusted to obtain the same torque for both fuels and engine was operated under several range of EGR (Exhaust Gas Recirculation) ratio. Under such conditions, PME showed shorter ignition delay time and lower R.H.R (rate of heat release) under 0-40% EGR ratio. With respect to engine exhaust gas species, CO, NO, THC and HCHO, CH3CHO concentration was almost the same when the EGR ratio is higher than 35% (Intake-Air/Fuel: A/F=20). However, PME also showed lower exhaust gas emission when the EGR ratio is higher than 30%.
Technical Paper

The Effects of Jatropha-derived Biodiesel on Diesel Engine Combustion and Emission Characteristics

2012-09-10
2012-01-1637
The objective of the present research is to investigate the effects on diesel engine combustion and NOx and PM emission characteristics in case of blending the ordinary diesel fuel with biodiesel in passenger car diesel engines. Firstly, we conducted experiments to identify the combustion and emissions characteristics in a modern diesel engine complying with the EURO 4 emission standard. Then, we developed a numerical simulation model to explain and generalize biodiesel combustion phenomena in detail and generalize emission characteristics. The experimental and simulation results are useful to reduce biodiesel emissions by controlling engine operating and design parameters in the diesel engine. Engine tests were conducted and a mathematical model created to investigate the effects of 40% and 100% methyl oleate modeled fuel representing Jatropha-derived biodiesel on diesel combustion and emission characteristics, over a wide range of passenger car DI diesel engine operating conditions.
Technical Paper

A Study on the Characteristics of Natural Gas Combustion at a High Compression Ratio by Using a Rapid Compression and Expansion Machine

2012-09-10
2012-01-1651
Natural gas is an attractive alternative fuel for internal combustion engines. Homogeneous charge compression ignition (HCCI) combustion is considered to be one of the most promising measures for increasing thermal efficiency and reducing emissions, but it is difficult to control and stabilize its ignition and combustion processes. This paper describes an experimental study of natural gas combustion utilizing two types of ignition assistance. Spark assistance, which is used for conventional spark ignition (SI) engines, and pilot diesel injection, hereinafter called diesel pilot, which generates multiple ignition points by using a small injection of diesel that accounts for 2% of the total heat release for the cycle. The performance of these two approaches was compared with respect to various combustion characteristics when burning homogeneous natural gas mixtures at a high compression ratio.
Technical Paper

A Numerical Study on Predicting Combustion Chamber Wall Surface Temperature Distributions in a Diesel Engine and their Effects on Combustion, Emission and Heat Loss Characteristics by Using a 3D-CFD Code Combined with a Detailed Heat Transfer Model

2015-09-01
2015-01-1847
A three-dimensional computational fluid dynamics (3D-CFD) code was combined with a detailed combustion chamber heat transfer model. The established model allowed not only prediction of instantaneous combustion chamber wall surface temperature distributions in practical calculation time but also investigation of the characteristics of combustion, emissions and heat losses affected by the wall temperature distributions. Although zero-dimensional combustion analysis can consider temporal changes in the heat transfer coefficient and in-cylinder gas temperature, it cannot take into account the effect of interactions between spatially distributed charge and wall temperatures. In contrast, 3D-CFD analysis can consider temporal and spatial changes in both parameters. However, in most zero-/multi- dimensional combustion analyses, wall temperatures are assumed to be temporally constant and spatially homogeneous.
Technical Paper

Numerical Optimization of Parameters to Improve Thermal Efficiency of a Spark-Ignited Natural Gas Engine

2015-09-01
2015-01-1884
Natural gas is a promising alternative fuel for internal combustion engines because of its clean combustion characteristics and abundant reserves. However, it has several disadvantages due to its low energy density and low thermal efficiency at low loads. Thus, to assist efforts to improve the thermal efficiency of spark-ignited (SI) engines operating on natural gas and to minimize test procedures, a numerical simulation model was developed to predict and optimize the performance of a turbocharged test engine, considering flame propagation, occurrence of knock and ignition timing. The numerical results correlate well with empirical data, and show that increasing compression ratios and retarding the intake valve closing (IVC) timing relative to selected baseline conditions could effectively improve thermal efficiency. In addition, employing moderate EGR ratios is also effective for avoiding knock.
Technical Paper

Developments of the Reduced Chemical Reaction Scheme for Multi-Component Gasoline Fuel

2015-09-01
2015-01-1808
The reduced chemical reaction scheme which can take the effect of major fuel components on auto ignition timing into account has been developed. This reaction scheme was based on the reduced reaction mechanism for the primary reference fuels (PRF) proposed by Tsurushima [1] with 33 species and 38 reactions. Some pre-exponential factors were modified by using Particle Swarm Optimization to match the ignition delay time versus reciprocal temperature which was calculated by the detailed scheme with 2,301 species and 11,116 elementary chemical reactions. The result using the present reaction scheme shows good agreements with that using the detailed scheme for the effects of EGR, fuel components, and radical species on the ignition timing under homogeneous charge compression ignition combustion (HCCI) conditions.
Technical Paper

Computational Study to Improve Thermal Efficiency of Spark Ignition Engine

2015-03-10
2015-01-0011
The objective of this paper is to investigate the potential of lean burn combustion to improve the thermal efficiency of spark ignition engine. Experiments used a single cylinder gasoline spark ignition engine fueled with primary reference fuel of octane number 90, running at 4000 revolution per minute and at wide open throttle. Experiments were conducted at constant fueling rate and in order to lean the mixture, more air is introduced by boosted pressure from stoichiometric mixture to lean limit while maintaining the high output engine torque as possible. Experimental results show that the highest thermal efficiency is obtained at excess air ratio of 1.3 combined with absolute boosted pressure of 117 kPa. Three dimensional computational fluid dynamic simulation with detailed chemical reactions was conducted and compared with results obtained from experiments as based points.
Technical Paper

3D Simulationson Premixed Laminar Flame Propagation of iso-Octane/Air Mixture at Elevated Pressure and Temperature

2015-03-10
2015-01-0015
This paper aims to validate chemical kinetic mechanisms of surrogate gasoline three components fuel by calculating one-dimensional laminar burning velocity of iso-octane/air mixture. Next, the application of level-set method on premixed combustion without consideration the effect of turbulence eddies on flame front is also studied in three-dimensional computational fluid dynamic (3D-CFD) simulation. In the 3D CFD simulation, there is an option to calculate laminar burning velocity by using empirical correlations, however it is applicable only for particular initial pressure and temperature in spark ignition engine cases. One-dimensional burning velocities from lean to rich of iso-octane/air mixture are calculated by using CHEMKIN-PRO with detailed chemistry and transport phenomena as a function of different equivalence ratios, different unburnt temperature and pressure ranges.
Technical Paper

A Quasi Two Dimensional Model of Transport Phenomena in Diesel Particulate Filters - The Effects of Particle and Wall Pore Diameter on the Pressure Drop -

2015-09-01
2015-01-2010
Experimental and numerical studies were conducted on diesel particulate filters (DPFs) under different soot loading conditions and DPF configurations. Pressure drops across DPFs with various mean pore diameters loaded with soots having different mean particle diameters were measured by introducing exhaust gases from a 2.2 liter inline four-cylinder, TCI diesel engine designed for use in passenger cars. A mechanistic hypothesis was then proposed to explain the observed trends, accounting for the effects of the soot loading regime in the wall and the soot cake layer on the pressure drop. This hypothesis was used to guide the development and validation of a numerical model for predicting the pressure drop in the DPF. The relationship between the permeability and the porosity of the wall and soot cake layer was modeled under various soot loading conditions.
X