Refine Your Search

Search Results

Viewing 1 to 12 of 12
Technical Paper

Development of Sublimator Technology for the European EVA Space Suit

1991-07-01
911577
Temperature and Humidity Control are important functions for the astronaut's comfort and safety in an EVA Space Suit. Several sources within the suit, like electrically powered devices, the CO2 removal system and the astronaut himself are permanently producing heat and humidity. Both have to be removed in order to prevent visor fogging and overheating of the astronaut. Heat from the European Space Suit will be dissipated by the physical process of water sublimation. At pressures lower than 6 hPa water will directly transform from ice into vapor. In the Sublimator this process will take place within a porous plate and will remove heat from both the oxygen ventilation loop and the cooling water loop. The Sublimator thus consists of a porous plate with the feedwater distribution underneath and a liquid/gas heat exchanger part. A breadboard model has been fabricated from stainless steel and a new porous plate has been developed.
Technical Paper

Design Status of the Closed-Loop Air Revitalization System ARES for Accommodation on the ISS

2007-07-09
2007-01-3252
During the last years extensive work has been done to design and develop the Closed-Loop Air Revitalization System ARES. The potential of ARES e.g. as part of the ISS ECLSS is to significantly reduce the water upload demand and to increase the safety of the crew by reducing dependence on re-supply flights. The design is adapted to the interfaces of the new base lined Russian MLM module as possible location for a future installation of ARES. Due to the lack of orbital support equipment and interfaces to a waste water bus, to a feed water supply line and due to the availability of only one single vent line it was necessary to make the ARES process water loop as independent as possible from the host vehicle. Another optimization effort was to match the CO2 desorption profile with the available hydrogen flow to achieve a sufficient water recovery performance, while meeting all related safety requirements, minimizing complexity and improving reliability.
Technical Paper

Columbus ECLS Activation and Initial Operations

2008-06-29
2008-01-2135
European Space Agency's (ESA's) Columbus module was launched on February 7, 2008. This marks the completion of more than 10 years of development. It is a major step forward for Europe in the area of Environmental Control and Life Support (ECLS) as Columbus contains several major assemblies which have been developed in Europe. These include the Condensing Heat Exchanger, Condensate Water Separator and the Cabin Fans. The paper gives a short overview of the system and its features and it will report the experiences from the initial activation and operations phase.
Technical Paper

ARES - ESA's Regenerative Air Revitalisation Experiment on the International Space Station

2008-06-29
2008-01-2093
ESA has been developing regenerative physicochemical air revitalisation technology for more than 20 years. The effort is now maturing into a flight demonstration experiment which is planned to be located in the Columbus module on ISS. The experiment shall be sized for a crew of three. It will comprise a CO2 concentration assembly, a Sabatier reactor and an electrolyser. The paper describes the adaptation of ARES to the available Columbus interfaces as well as ARES development status, performances, benefits to the ISS and operational agreements with ISS partners.
Technical Paper

The Columbus ECLSS First Year of Operations

2009-07-12
2009-01-2414
The launch and activation of ESA's Columbus module in early 2008 marked the completion of more than 10 years of development. Since then the Columbus ECLS is operating, including its major European ECLSS assemblies such as Condensing Heat Exchanger (CHX), Condensate Water Separator, Cabin Fans and Sensors. The paper will report the experiences from the first year of operations in terms of events, failures and lessons learned. Examples of this is the description of some off-nominal situations (such as Condensate Removal and IMV Return Fan failure, and relevant troubleshooting), and the preparation to Columbus Reduced Condensation Mode, as requested by NASA in order to minimize the crew time needed to empty Condensate Water Tanks in US Lab.
Technical Paper

Design Validation - via Parabolic Flight Tests - of a Condensate Buffer Equalizing a Discontinuous Gas / Water Flow between a Condensing Heat Exchanger and a Water Separator

2006-07-17
2006-01-2087
EADS SPACE Transportation GmbH designed, built and tested a condensate buffer to be located between a Condensing Heat Exchanger (CHX) and a Condensate Water Separator Assembly (CWSA), as part of the ECLSS of the European Columbus Module. Under zero-g conditions, the separation of water from an air-water mixture is always difficult, especially if a passive device is to be used such as the low power consuming Columbus CWSA. The additional buffer volume reduces condensate water peaks reaching the CWSA to a level that excludes an overloading of the CWSA and a release of free water droplets into the air return to the cabin. In the CHX/CWSA system this may only be necessary under worst case operational conditions and with a failure of the qualified hydrophilic coating of the CHX. The buffer design principle was confirmed via prior analyses and on-ground testing. The performance of such a condensate buffer under micro-g conditions was verified during parabolic flights.
Technical Paper

Design Status of ARES for Accommodation on the ISS

2006-07-17
2006-01-2270
During the last years extensive work has been done to design and develop the Closed Loop Air Revitalization System ARES. The potential of ARES for future space exploration missions is to significantly reduce the water upload demand, increase the safety of the crew by reducing dependency on re-supply flights and, due to the launch mass restraints, make future exploration missions to other planets possible. The ARES demonstrator includes the functions of CO2 concentration, CO2 reduction and oxygen generation. Whereas in previous phases ARES was designed to operate in NODE3 of the ISS, this has been changed to an intended ARES operation in the Russian Multifunctional Laboratory Module MLM. This year’s activities concentrated on process optimization of the Carbon Dioxide Removal Assembly (CCA) interaction with the Sabatier Reactor (CRA), extreme conditions testing, life time tests with the Sabatier Reactor and the oxygen generation stack and system testing.
Technical Paper

Improving the Columbus Integrated Overall Thermal Mathematical Model (IOTMM) Using Computational Fluid Dynamics (CFD)

2005-07-11
2005-01-2796
The cabin space of the Columbus APM is well ventilated by air entering through multiple air diffusers and exiting via the return grid and hatch. Therefore, the heat transfers by bulk fluid motion and by convection to the walls need to be experimentally and/or numerically investigated and implemented in the thermal mathematical models (TMM) describing the cabin. CFD analysis provided key data on the thermal couplings due to convective heat transfer and bulk fluid motion for the thermal mathematical model, which in turn was used to correlate test data from an environmental control system test and to provide supplemental information on assumptions used in the lumped capacitance model. This paper presents the logic and results of the steady-state CFD analysis, the potential implementation of the results in a thermal mathematical model, and compares these results with test data obtained during a separate Columbus cabin ventilation qualification test.
Technical Paper

Advanced Stainless Steel Condensing Heat Exchanger

2005-07-11
2005-01-2805
Under an ESA Contract EADS SPACE Transportation GmbH has designed and built an advanced Stainless Steel Condensing Heat Exchanger (CHX) Spare as part of the Environmental Control and Life Support Subsystem (ECLSS) of the European Columbus Module that shall be docked to the ISS in early 2007. Lessons learnt from both, ground and space applications of condensing heat exchangers were to be considered, for risk mitigation, in a CHX alternative design. The slurper section is equipped with a sophisticated capillary suction feature that supports an adequate condensate removal and transport through the slurper holes to the water separator assembly even at low airflow condition. The air fin surface is covered with a hydrophilic coating that did pass qualification for 10 years' exposure to the various contaminants specified respectively determined in the ISS atmosphere so far. The biocidal additive of such coating is qualified for fungus growth prevention, accordingly.
Technical Paper

Design Status of ARES Closed-Loop Air Revitalization System for Accommodation on the ISS

2005-07-11
2005-01-2807
During the last years extensive work has been done to design and develop the Closed Loop Air Revitalization System ARES. The potential of ARES for future space exploration missions is to significantly reduce the water upload demand, increase the safety of the crew by reducing dependency on re-supply flights and due to the launch mass restraints - make future exploration missions to other planets possible. Past years’ activities concentrated on the development of a full-scale demonstrator which was in form, fit, and function comparable to an ‘engineering model’ (EM). Most equipment was off-the-shelf and has been mechanically upgraded to EM standard. The demonstrator includes the functions of CO2 concentration, CO2 reduction and oxygen generation. All components fit into one ISPR. The design minimizes the number of external interfaces in order to achieve a high degree of independence and flexibility. Design baseline for the development was the accommodation in NODE 3 of the ISS.
Technical Paper

ECS Re-Test Analytical Evaluation

2005-07-11
2005-01-3118
A final test activity was carried out to complete the verification of the Environmental Control System (ECS) performances by experimentally reproducing the thermal hydraulic behaviour of the Environmental Control & Life Support Subsystem (ECLSS) section integrated in the overall Module, expected on analytical basis. A previous test campaign (called Columbus ECS PFM Test) carried out in EADS-Bremen in spring 2003 and described in paper number 2004-01-2425 showed some contradictory data concerning the air loop behaviour. These incoherent test results were related to the environmental and geometrical cabin loop conditions during the on-ground 1g test and to improper position of the sensor measuring the cabin temperature. For this reason a partial repetition of the test has been performed. In particular, this experimental campaign was focused on the verification of the cabin air temperature control, as a consequence of the Temperature Control Valve (TCV) movement.
Technical Paper

Columbus Integrated System Level ECS Test Correlation

2004-07-19
2004-01-2425
The Columbus ECS PFM Test was intended as the final verification of the Module Thermal Design after a series of successful tests at subsystems level (e.g. the Active Thermal Control Subsystem and the Environmental Control and Life Support System) The test campaign has been articulated as a sequence of several test cases to investigate the main thermal aspects, to prove the Module thermal design in the extreme operative conditions and to correlate the thermal mathematical model (TMM). The interpretation of test results and the correlation confirmed that the thermal design of the module is adequate, but some areas of concern remain, mainly for the difficulty to translate to 0-g the results of a complex test in 1-g environment, and for some aspects of the air and cabin loops.
X