Refine Your Search

Search Results

Viewing 1 to 4 of 4
Technical Paper

Bolt-Load Retention Behavior of a Die Cast Magnesium-Rare Earth Alloy

2001-03-05
2001-01-0425
The need for improved understanding of new magnesium alloys for the automotive industry continues to grow as the application for these lightweight alloys expands to more demanding environments, particularly in drivetrain components. Their use at elevated temperatures, such as in transmission cases, presents a challenge because magnesium alloys generally have lower creep resistance than aluminum alloys currently employed for such applications. In this study, a new die cast magnesium alloy, MEZ, containing rare earth (RE) elements and zinc as principal alloying constituents, was examined for its bolt-load retention (BLR) properties. Preloads varied from 14 to 28 kN and test temperatures ranged from 125 to 175°C. At all test temperatures and preloads, MEZ retained the greatest fraction of the initial imposed preload when compared to the magnesium alloys AZ91D, AE42, AM50, and the AM50+Ca series alloys.
Technical Paper

The Effect of Porosity Size on the Fatigue Properties in a Cast 319 Aluminum Alloy

2001-03-05
2001-01-0818
A study was conducted to determine how the fatigue life of a 319 aluminum alloy (W319) was affected by pore size. To perform this study, two sets of microstructurally similar castings with differing levels of microporosity were created. Following room temperature fatigue testing, the pores that initiated fatigue cracks were identified and quantified. The results indicate that doubling the average initiating pore diameter yielded an approximate 30% decrease in run-out stress in the W319-T7 aluminum alloy.
Technical Paper

The Dimensional Stability of Cast 319 Aluminum

2003-03-03
2003-01-0822
The automotive use of cast aluminum has greatly increased during the past decade, especially for engine blocks and cylinder heads. One physical property that is important in elevated-temperature applications is long-term dimensional stability of the cast aluminum component. Certain cast aluminum alloys (like 319) can undergo dimensional changes when exposed to engine operating temperatures over long periods of time; when these changes occur, the shape of the casting is distorted and the performance of the component may be diminished. Thus, a study was conducted to measure dimensional growth changes in a cast 319-type aluminum alloy as a function of heat-treatment, exposure temperature, and exposure time at the given temperature. The results show that all three factors have a significant effect upon the dimensional stability.
Technical Paper

The Effect of Solidification Time on the Mechanical Properties in a Cast A356-T6 Aluminum Alloy

1997-02-24
970019
A study was conducted to determine how the mechanical properties of an A356-T6 Aluminum alloy are affected by solidification time. Solidification time has been found to have a large effect on the microstructure, especially in terms of the size of the SDAS as well as the size and distribution of porosity. Solidification time also has a large effect on the ultimate tensile strength, ductility, and fatigue properties of A356-T6 Al. Comparisons between porosity-containing (“As-Cast) and porosity-free (“As-Cast + HIP”) samples revealed that the presence of porosity had a dramatic effect on fatigue life; tensile properties remained unaffected.
X