Refine Your Search

Topic

Search Results

Technical Paper

The Effect of a Ceramic Particulate Trap on the Particulate and Vapor Phase Emissions of a Heavy-Duty Diesel Engine

1991-02-01
910609
Exhaust emissions were characterized from a Cummins LTA10 heavy-duty diesel engine operated at two EPA steady-state modes with and without an uncatalyzed Corning ceramic particulate trap. The regulated emissions of nitrogen oxides (NOx), hydrocarbons (HC), and total particulate matter (TPM) and its components as well as the unregulated emissions of PAH, nitro-PAH, mutagenic activity and particle size distributions were measured. The consistently significant effects of the trap on regulated emissions included reductions of TPM and TPM-associated components. There were no changes in NOx and HC were reduced only at one operating condition. Particle size distribution measurements showed that nuclei-mode particles were formed downstream of the trap, which effectively removed accumulation-mode particles. All of the mutagenicity was direct-acting and the mutagenic activity of the XOC was approximately equivalent to that of the SOF without the trap.
Technical Paper

The Influence of Sampling Conditions on the Repeatability of Diesel Particulate and Vapor Phase Hydrocarbon and PAH Measurements

1990-02-01
900642
A study was conducted to assess the effects of controlling filter face temperatures and two differently sized collection systems on diesel total particulate matter (TPM) and vapor phase hydrocarbon levels from a diesel engine. The results were used to revise sampling protocols so that variability associated with quantitation of polynuclear aromatic hydrocarbons (PAH) is minimized. Particulate soluble organic fraction (SOF) levels (%) were compared 1) for tests where the dilute exhaust filter face temperature was held constant by varying dilution ratio (DR) to account for day to day variations in inlet air temperature to the tunnel and 2) for tests in earlier studies where the DR was held constant and the filter face temperature then varied because of varying tunnel inlet air temperature. Between date variations in %SOF were reduced by about 60% due to holding filter face temperatures constant, compared to holding DR constant.
Technical Paper

Oxidation Catalytic Converter and Emulsified Fuel Effects on Heavy-Duty Diesel Engine Emissions

2002-03-04
2002-01-1277
A study was conducted to assess the effects of a water-diesel fuel emulsion with and without an oxidation catalytic converter (OCC) on steady-state heavy-duty diesel engine emissions. Two OCCs with different metal loading levels were used in this study. A 1988 Cummins L10-300 heavy-duty diesel engine was operated at the rated speed of 1900 rpm and at 75% and 25% load conditions (EPA modes 9 and 11 respectively) of the 13 mode steady-state test as well as at idle. Raw exhaust emissions' measurements included total hydrocarbons (HC), oxides of nitrogen (NOx) and nitric oxide (NO). Diluted exhaust measurements included total particulate matter (TPM) and its primary constituents, the soluble organic (SOF), sulfate (SO42-) and the carbonaceous solids (SOL) fractions. Vapor phase organic compounds (XOC) were also analyzed. The SOF and XOC samples were analyzed for selected polynuclear aromatic hydrocarbons (PAHs).
Technical Paper

The Effect of Low Sulfur Fuel and a Ceramic Particle Filter on Diesel Exhaust Particle Size Distributions

1992-02-01
920566
Diesel exhaust particle size distributions were measured using an Electrical Aerosol Analyzer (EAA) with both conventional (0.31 wt. pet sulfur) and low sulfur fuel (0.01 wt pet sulfur) with and without a ceramic diesel particle filter (DPF). The engine used for this study was a 1988 heavy-duty diesel engine (Cummins LTA10-300) operated at EPA steady-state modes 9 and 11. The particle size distribution results indicated the typical bi-modal distribution; however, there were clear differences in the number of particles in each mode for all conditions. For the baseline conditions with no DPF, there was more than one order of magnitude greater number of particles in the nuclei mode for the conventional fuel as compared to the low sulfur fuel, while the accumulation modes for each fuel were nearly identical.
Technical Paper

The Influence of a Low Sulfur Fuel and a Ceramic Particle Trap on the Physical, Chemical, and Biological Character of Heavy-Duty Diesel Emissions

1992-02-01
920565
This study was conducted to assess the effects of a low sulfur (<0.05 wt.%) fuel and an uncatalyzed ceramic particle trap on heavy-duty diesel emissions during both steady-state operation and during periods of electrically assisted trap regeneration. A Cummins LTA10-300 engine was operated at two steady-state modes with and without the trap. The exhaust trap system included a Corning EX-54 trap with an electrically assisted regeneration system. Both regulated emissions (oxides of nitrogen - NOx, total hydrocarbons - HC, and total particulate matter - TPM) and some unregulated emissions (polynuclear aromatic hydrocarbons - PAH soluble organic fraction - SOF, sulfates, vapor phase organics, and mutagenic activity) were measured during baseline, trap, and regeneration conditions. Emissions were collected with low sulfur (0.01 wt.%) fuel and compared to emissions with a conventional sulfur (0.32 wt.%) fuel. These fuels also varied in other fuel properties.
Technical Paper

Modeling Study of Active Regeneration of a Catalyzed Particulate Filter Using One-Dimensional DOC and CPF Models

2011-04-12
2011-01-1242
The catalyzed particulate filter (CPF), used in conjunction with a diesel oxidation catalyst (DOC) is an important aftertreatment device used to meet Environmental Protection Agency (EPA) heavy-duty diesel emission standards for particulate matter (PM). Numerical modeling of these exhaust after-treatment devices decreases the time and cost of development involved. Modeling CPF active regeneration gives insight into the PM oxidation kinetics, which helps in reducing the regeneration fuel penalty. As seen from experimental data, active regeneration of the CPF results in a significant temperature increase into the CPF (up to 8°C/sec) which affects the oxidation rate of particulate matter (PM). PM oxidation during active regeneration was determined to be a function of filter PM loading, inlet temperature and inlet hydrocarbon concentration.
Technical Paper

Catalyzed Particulate Filter Passive Oxidation Study with ULSD and Biodiesel Blended Fuel

2012-04-16
2012-01-0837
A 2007 Cummins ISL 8.9L direct-injection common rail diesel engine rated at 272 kW (365 hp) was used to load the filter to 2.2 g/L and passively oxidize particulate matter (PM) within a 2007 OEM aftertreatment system consisting of a diesel oxidation catalyst (DOC) and catalyzed particulate filter (CPF). Having a better understanding of the passive NO₂ oxidation kinetics of PM within the CPF allows for reducing the frequency of active regenerations (hydrocarbon injection) and the associated fuel penalties. Being able to model the passive oxidation of accumulated PM in the CPF is critical to creating accurate state estimation strategies. The MTU 1-D CPF model will be used to simulate data collected from this study to examine differences in the PM oxidation kinetics when soy methyl ester (SME) biodiesel is used as the source of fuel for the engine.
Technical Paper

Experimental and Modeling Study of a Diesel Oxidation Catalyst (DOC) under Transient and CPF Active Regeneration Conditions

2013-04-08
2013-01-1046
In this study, a DOC catalyst was experimentally studied in an engine test cell with a2010 Cummins 6.7L ISB diesel and a production aftertreatment system. The test matrix consisted of steady state, active regeneration with in-cylinder fuel dosing and transient conditions. Conversion efficiencies of total hydrocarbon (THC), CO, and NO were quantified under each condition. A previously developed high-fidelity DOC model capable of predicting both steady state and transient active regeneration gaseous emissions was calibrated to the experimental data. The model consists of a single 1D channel where mass and energy balance equations were solved for both surface and bulk gas regions. The steady-state data were used to identify the activation energies and pre-exponential factors for CO, NO and HC oxidation, while the steady-state active regeneration data were used to identify the inhibition factors. The transient data were used to simulate the thermal response of the DOC.
Technical Paper

The Effects of Fuel Sulfur Concentration on Regulated and Unregulated Heavy-Duty Diesel Emissions

1993-03-01
930730
The effects of fuel sulfur concentration on heavy-duty diesel emissions have been studied at two EPA steady-state operating conditions, mode 9 (1900 RPM, 75% Load) and mode 11(1900 RPM, 25% Load). Data were obtained using one fuel at two sulfur levels (Low Sulfur, LS = 0.01 wt% S and Doped Low Sulfur DS = 0.29 wt% S). All tests were conducted using a Cummins LTA10-300 heavy-duty diesel engine. No significant changes were found for the nitrogen oxides (NOx), soluble organic fractions (SOF) and XAD-2 (a copolymer of styrene and divinylbenzene) organic component (XOC) due to the fuel sulfur level increase at either engine mode. The hydrocarbon (HC) levels were not significantly affected by sulfur at mode 9; however, at mode 11 the HC levels were reduced by 16%. The total particulate matter (TPM) levels increased by 17% at mode 11 and by 24% at mode 9 (both significantly different).
Technical Paper

Evaluation and Application of a Portable Tailpipe Emissions Measurement Apparatus for Field Use

1992-09-01
921647
This paper discusses the evaluation and application of a portable parked-vehicle tailpipe emissions measurement apparatus (EMA). The EMA consists of an exhaust dilution system and a portable instrument package. The EMA instantaneously dilutes and cools a sample of exhaust with compressed nitrogen or air at a known dilution ratio, thereby presenting it to instruments as it is presented to personnel in the surrounding environment. The operating principles and governing equations of the EMA are presented. A computational method is presented to determine the engine operating and performance parameters from the exhaust CO2 concentrations along with an assumed engine overall volumetric efficiency and brake specific fuel consumption. The parameters determined are fuel/air ratio, mass flow rates of fuel, air and exhaust emissions, and engine brake torque and horsepower.
Technical Paper

A Review of Diesel Particulate Control Technology and Emissions Effects - 1992 Horning Memorial Award Lecture

1994-03-01
940233
Studies have been conducted at Michigan Technological University (MTU) for over twenty years on methods for characterizing and controlling particulate emissions from heavy-duty diesel engines and the resulting effects on regulated and unregulated emissions. During that time, control technologies have developed in response to more stringent EPA standards for diesel emissions. This paper is a review of: 1) modern emission control technologies, 2) emissions sampling and chemical, physical and biological characterization methods and 3) summary results from recent studies conducted at MTU on heavy-duty diesel engines with a trap and an oxidation catalytic converter (OCC) operated on three different fuels. Control technology developments discussed are particulate traps, catalysts, advances in engine design, the application of exhaust gas recirculation (EGR), and modifications of fuel formulations.
Technical Paper

Effects of an Oxidation Catalytic Converter on Regulated and Unregulated Diesel Emissions

1994-03-01
940243
In this study, the effects of an oxidation catalytic converter (OCC) on regulated and unregulated emissions from a 1991 prototype Cummins I.10-310 diesel engine fueled with a 0.01 weight percent sulfur fuel were investigated. The OCC's effects were determined by measuring and comparing selected raw exhaust emissions with and without the platinum-based OCC installed in the exhaust system, with the engine operated at three steady-state modes. It was found that the OCC had no significant effect on oxides of nitrogen (NOX) and nitric oxide (NO) at any mode, but reduced hydrocarbon (HC) emmissions by 60 to 70 percent. The OCC reduced total particulate matter (TPM) levels by 27 to 54 percent, primarily resulting from 53 to 71 percent reductions of the soluble organic fraction (SOF). The OCC increased sulfate (SO42-) levels at two of the three modes (modes 9 and 10), but the overall SO42- contribution to TPM was less than 6 percent at all modes due to the low sulfur level of the fuel.
Technical Paper

Effects of a Ceramic Particle Trap and Copper Fuel Additive on Heavy-Duty Diesel Emissions

1994-10-01
942068
This research quantifies the effects of a copper fuel additive on the regulated [oxides of nitrogen (NOx), hydrocarbons (HC) and total particulate matter (TPM)] and unregulated emissions [soluble organic fraction (SOF), vapor phase organics (XOC), polynuclear aromatic hydrocarbons (PAH), nitro-PAH, particle size distributions and mutagenic activity] from a 1988 Cummins LTA10 diesel engine using a low sulfur fuel. The engine was operated at two steady state modes (EPA modes 9 and 11, which are 75 and 25% load at rated speed, respectively) and five additive levels (0, 15, 30, 60 and 100 ppm Cu by mass) with and without a ceramic trap. Measurements of PAH and mutagenic activity were limited to the 0, 30 and 60 ppm Cu levels. Data were also collected to assess the effect of the additive on regeneration temperature and duration. Copper species collected within the trap were identified and exhaust copper concentrations quantified.
Technical Paper

Vehicle Engine Aftertreatment System Simulation (VEASS) Model: Application to a Controls Design Strategy for Active Regeneration of a Catalyzed Particulate Filter

2005-04-11
2005-01-0970
Heavy-duty diesel engine particulate matter (PM) emissions must be reduced from 0.1 to 0.01 grams per brake horsepower-hour by 2007 due to EPA regulations [1]. A catalyzed particulate filter (CPF) is used to capture PM in the exhaust stream, but as PM accumulates in the CPF, exhaust flow is restricted resulting in reduced horsepower and increased fuel consumption. PM must therefore be burned off, referred to as CPF regeneration. Unfortunately, nominal exhaust temperatures are not always high enough to cause stable self-regeneration when needed. One promising method for active CPF regeneration is to inject fuel into the exhaust stream upstream of an oxidation catalytic converter (OCC). The chemical energy released during the oxidation of the fuel in the OCC raises the exhaust temperature and allows regeneration.
Technical Paper

A Turbocharged Spark Ignition Engine with Low Exhaust Emissions and Improved Fuel Economy

1973-02-01
730633
Turbocharging, in addition to increasing an engine's power output, can be effectively used to maintain exhaust emission levels while improving fuel economy. This paper presents the emission and performance results obtained from a turbocharged multicylinder spark ignition engine with thermal reactors and exhaust gas recirculation (EGR) operated at steady-state, part-load conditions for four engine speeds. When comparing a turbocharged engine to a larger displacement naturally aspirated engine of equal power output, the emissions expressed in grams per mile were relatively unchanged both with and without EGR. However, turbocharging provided an average of 20% improvement in fuel economy both with and without EGR. When comparing the turbocharged and nonturbocharged versions of the same engine without EGR at a given load and speed, turbocharging increased the hydrocarbon (HC) and carbon monoxide (CO) emissions and decreased oxides of nitrogen (NOx) emissions.
Technical Paper

CRC Evaluation of Techniques for Measuring Hydrocarbons in Diesel Exhaust-Phase IV

1975-02-01
750203
In 1972 and 1973, the CRC-APRAC Program Group on Diesel Exhaust carried out a fourth program to evaluate techniques for measuring concentration of hydrocarbon in diesel exhaust. The first two programs were conducted in 1967 and 1968. In them, a single cylinder diesel engine was shipped among 13 laboratories and each laboratory measured hydrocarbon emissions by their own method. Agreement among laboratories (instruments) was poor in both programs. The third program was conducted in 1970 at one laboratory on one engine. This time, agreement among instruments was much improved from the earlier programs. The fourth program was conducted to confirm these later results. In it, a multi-cylinder diesel generating set was circulated among 15 participating laboratories, and each laboratory measured exhaust hydrocarbon by methods that complied with SAE Recommended Practice J215, “Continuous Hydrocarbon Analysis of Diesel Exhaust.”
Technical Paper

Emissions and Fuel Usage by the U. S. Truck and Bus Population and Strategies for Achieving Reductions

1974-02-01
740537
This paper presents an approach to modeling the United States truck and bus population. A detailed model is developed that utilizes domestic factory sales figures combined with a scrappage factor as a building block for the total population. Comparison with historical data for 1958-1970 shows that the model follows trends well for intermediate parameters such as total vehicle miles per year, total fuel consumption, scrappage, etc. Fuel consumption and HC, CO, NO2, CO2 and particulate matter emissions for gasoline and diesel engines are of primary interest. The model details these parameters for the time span 1958-2000 in one-year increments. For HC and CO, truck and bus emissions could equal or exceed automobile emissions in the early 1980s, depending on the degree of control. Three population control strategies are analyzed to determine their effects on reducing fuel consumption or air pollution in later years.
Technical Paper

An Emission and Fuel Usage Computer Model for Trucks and Buses

1978-02-01
780630
This paper presents the development of a computer model to simulate fuel usage and emission contributions of the past and future truck and bus population in the United States. The projected future years are beyond 1976 to 1990. The trends in vehicle population growth, yearly miles traveled and ton-miles are also calculated by the model. The model developed is flexible and brings together several technical concepts which reflect recent inputs from industry and government. The formulation of the model is based on a systems approach, in which the several submodels (the "Population," "Mileage," "Fuel Usage," and "Emission") are interrelated. The preliminary quantitative results are discussed to demonstrate the satisfactory performance of the computer model. Increased rates of dieselization are analyzed to determine their effect on reducing fuel consumption and the impact on total emission contributions. The use of the computer model to study an urban area for air quality is discussed.
Technical Paper

A Statistical Approach to Determining the Effects of Speed, Load, Oil and Coolant Temperature on Diesel Engine Specific Fuel Consumption

1978-02-01
780971
Experimental Brake Specific Fuel Consumption (BSFC) data are presented for two engines as a function of engine speed, load, outlet coolant temperature and inlet oil temperature. The engines used in the study were the Cummins VT-903 (turbocharged) and the Caterpillar 3208, both being direct-injection and four-cycle. The data were taken for the Cat 3208 engine using a fractional factorial statistical method which reduced the total test matrix from 256 to 64 data points. The experimental data are used in the development of BSFC regression equations as a function of load, speed, outlet coolant temperature and inlet oil temperatures. A mathematical parameter for expressing quantitatively the change of BSFC per 10°F change in coolant and oil temperature is presented. It was found that an increase in the coolant and/or oil temperatures had the effect of reducing BSFC in both engines.
Technical Paper

The Characterization of the Hydrocarbon and Sulfate Fractions of Diesel Particulate Matter

1978-02-01
780111
One of the more objectionable aspects of the use of diesel engines has been the emission of particulate matter. A literature review of combustion flames, theoretical calculations and dilution tunnel experiments have been performed to elucidate the chemical and physical processes involved in the formation of diesel particulate matter. A comparative dilution tunnel study of diluted and undiluted total particulate data provided evidence supporting calculations that indicate hydro-carbon condensation should occur in the tunnel at low exhaust temperatures. The sample collection system for the measurement of total particulate matter and soluble sulfate in particulate matter on the EPA 13 mode cycle is presented. A method to correct for hydrocarbon interferences in the EPA barium chloranilate method for the determination of sulfate in particulate matter is discussed.
X