Refine Your Search

Search Results

Viewing 1 to 7 of 7
Journal Article

A Virtual Driving Education Simulation System - Hardware and Software with Pilot Study

2013-04-08
2013-01-1407
Novice drivers are often ill-equipped to safely operate a motor vehicle due to their limited repertoire of skills and experiences. However, automotive simulation tools can be applied to better educate young drivers for a number of common driving scenarios. In this paper, the Clemson Automotive Training System (CATS) will be presented to educate and train novice drivers to safely operate four wheel passenger vehicles on paved roadways. A portable automotive simulator can be programmed to emulate a variety of high-crash rate scenarios and roadway geometries. Drivers receive instructions regarding proper driving techniques and behaviors with an opportunity to practice the given vehicle maneuver. An on-line evaluation methodology has been designed to analyze the drivers' capabilities at handling these roadway events. First, a pre-simulation questionnaire evaluates their basic understanding of everyday driving situations.
Technical Paper

Automotive Simulator Based Novice Driver Training with Assessment

2011-04-12
2011-01-1011
Motor vehicle crashes involving novice drivers are significantly higher than matured driver incidents as reported by the National Highway Traffic Safety Administration Fatality Analysis Reporting System (NHTSA-FARS). Researchers around the world and the United States are focused on how to decrease crashes for this driver demographic. Novice drivers usually complete driver education classes as a pre-requisite for full licensure to improve overall knowledge and safety. However, compiled statistics still indicate a need for more in-depth training after full licensure. An opportunity exists to supplement in-vehicle driving with focused learning modules using automotive simulators. In this paper, a training program for “Following Etiquette” and “Situational Awareness” was developed to introduce these key driving techniques and to complete a feasibility study using a driving simulator as the training tool.
Technical Paper

Evaluation of an Automotive Simulator Based Driver Safety Training Program for Run-Off-the-Road and Recovery

2013-04-08
2013-01-1260
Despite the growing acceptance of driver education programs, there remains a class of unpredictable and dangerous vehicle situations for which very little training or education is offered. Included in this list is a condition called run-off-the-road (ROR) which occurs when the wheels of the vehicle leave the paved surface of the road and begin to travel on the lower friction surfaces of the shoulder or side of the road. Unsuccessful recovery from ROR contributes to an overwhelming percentage of motorized vehicle crash fatalities and injuries. Most present solutions involve roadway infrastructure management and driver assistance systems. While these solutions have contributed varying amounts of success to the ROR problem, they remain limited as they do not directly address the critical cause of ROR crashes which is driver performance errors.
Technical Paper

Assessment of a Safe Driving Program for Novice Operators

2013-04-08
2013-01-0441
A safe driver program has been established through a public-private partnership. This program targets novice drivers and uses a combination of classroom and in-vehicle training exercises to address critical driver errors known to lead to crashes. Students participate in four modules: braking to learn proper stopping technique, obstacle avoidance / reaction time to facilitate proper lane selection and collision avoidance, tailgating to learn about following distances, and loss of control to react appropriately when a vehicle is about to become laterally unstable. Knowledge pre and posttests are also administered at the start and end of the program. Students' in-vehicle driving performance are evaluated by instructors as well as recorded by onboard data acquisition units. The data has been evaluated with objective and subjective grading rubrics. The 70 participants in three classes used as a case study achieved an average skill score of 83.93/100.
Technical Paper

Development and Evaluation of a Portable Driving Performance and Analysis System for Education Purposes

2015-04-14
2015-01-0259
According to the National Highway Traffic Safety Administration (NHTSA), motor collisions account for nearly 2.4 million injuries and 37 thousand fatalities each year in the United States. A great deal of research has been done in the area of vehicular safety, but very little has been completed to ensure licensed drivers are properly trained. Given the inherent risks in driving itself, the test for licensure should be uniform and consistent. To address this issue, an inexpensive, portable data acquisition and analysis system has been developed for the evaluation of driver performance. A study was performed to evaluate the system, and each participant was given a normalized driver rating. The average driver rating was μ=55.6, with a standard deviation of σ=12.3. All but 3 drivers fell into the so-called “Target Zone”, defined by a Driver Rating of μ± 1σ.
Technical Paper

Driver Models for Virtual Testing of Automotive Run-Off-Road and Recovery Control Systems and Education Strategies

2015-04-14
2015-01-0256
Driver modeling is essential to both vehicle design and control unit development. It can improve the understanding of human driving behavior and decrease the cost and risk of vehicle system verification and validation. In this paper, three driver models were implemented to simulate the behavior of drivers subject to a run-off-road recovery event. Target path planning, pursuit behavior, compensate behavior, physical limitations, and neuromuscular modeling were taken into consideration in the feedforward/feedback driver model. A transfer function driver model and a cost function based driver model from a popular vehicle simulation software were also simulated and a comparison of these three models was made. The feedforward/feedback driver model exhibited the best balance of performance with smallest overshoot (0.226m), medium settling time (1.20s) and recovery time (4.30s).
Technical Paper

A Dynamic Driving Course for Military Personnel -Curriculum and Assessment Results

2015-04-14
2015-01-0130
Driving skills and driving experience develop differently between a civilian and a military service member. Since 2000, the Department of Defense reports that two-thirds of non-related to war fatalities among active duty service members were due to transportation-related incidents. In addition, vehicle crashes are the leading non-related to war cause of both fatalities and serious injuries among active duty Marines. A pilot safe driving program for Marines was jointly developed by the Richard Petty Driving Experience and Clemson University Automotive Safety Research Institute. The pilot program includes four modules based on leading causes of vehicle crashes, and uses classroom and behind the wheel components to improve and reinforce safe driving skills and knowledge. The assessment results of this pilot program conducted with 192 Marines in September 2011 at Camp LeJeune, NC are presented and discussed.
X