Refine Your Search

Search Results

Viewing 1 to 8 of 8
Journal Article

A Study of Fuel Converter Requirements for an Extended-Range Electric Vehicle

2010-04-12
2010-01-0832
Current focus on techniques to reduce the tailpipe carbon dioxide (CO₂) emissions of road vehicles is increasing the interest in hybrid and electric vehicle technologies. Pure electric vehicles require bulky, heavy, and expensive battery packs to enable an acceptable drivable range to be achieved. Extended-range electric vehicles (E-REVs) partly overcome the limitations of current battery technology by having an onboard fuel converter that converts a liquid fuel, such as gasoline, into electrical energy whilst the vehicle is driving. Thus enabling the traction battery storage capacity to be reduced, whilst still maintaining an acceptable vehicle range. This paper presents results from a drive style analysis toolset that enable US and EU fleet vehicle drive data to be categorized and compared. Key metrics, such as idle frequency, idle duration, vehicle speed, and vehicle acceleration are analyzed.
Journal Article

Analysis of Real World Data from a Range Extended Electric Vehicle Demonstrator

2014-10-13
2014-01-2887
MAHLE Powertrain has built a range-extended electric vehicle demonstrator, with a series hybrid configuration. The vehicle is intended to operate predominantly purely electrically. Once the battery state of charge is depleted a gasoline engine (range extender) is activated to provide the energy required to propel the vehicle. As part of the continuing development of this vehicle, MAHLE Powertrain has recorded data during real world driving, with the aim of further investigating the actual usage a range-extended electric vehicle under non-laboratory test conditions. The vehicle is instrumented with a data acquisition system which records physical parameters, for example coolant temperatures, as well as CAN-based data from the engine and vehicle management systems.
Journal Article

Dynamic Downsizing Gasoline Demonstrator

2017-03-28
2017-01-0646
Gasoline engine downsizing is already established as a technology for reducing vehicle CO2 emissions. Further benefits are possible through more aggressive downsizing, however, the tradeoff between the CO2 reduction achieved and vehicle drivability limits the level of engine downsizing currently adopted by vehicle manufacturers. This paper will present the latest results achieved from a very heavily downsized engine, and resulting demonstrator vehicle, featuring eSupercharging in combination with a conventional turbocharger. The original 1.2 litre, 3-cylinder, MAHLE downsizing engine has been re-configured to enable a specific power output in excess of 160 kW/litre. Of key importance is a cost effective, efficient and flexible boosting system.
Journal Article

Heavily Downsized Gasoline Demonstrator

2016-04-05
2016-01-0663
Gasoline engine downsizing is already established as a proven technology to reduce automotive fleet CO2 emissions by as much as 25 %. Further benefits are possible through more aggressive downsizing, however, the trade-off between the CO2 reduction achieved and vehicle drive-ability limits the level of engine downsizing currently adopted. This paper presents results showing the benefits of adding an eSupercharger to a very heavily downsized engine. Measurements are presented from a 1.2 litre, 3-cylinder, engine fitted with an eSupercharger in addition to a conventional turbocharger. The original MAHLE downsizing engine has been re-configured to enable a specific power output that exceeds 160 kW/litre. Of key importance is a cost effective, efficient and flexible boosting system.
Technical Paper

Design of a Dedicated Range Extender Engine

2011-04-12
2011-01-0862
Current focus on techniques to reduce the tailpipe CO₂ emissions of road vehicles is increasing the interest in hybrid and electric vehicle technologies. Pure electric vehicles require bulky, heavy, and expensive battery packs to enable an acceptable drive-able range to be achieved. Extended-range electric vehicles (E-REV) partly overcome the limitations of current battery technology by having a "range extender" unit, which consists of an onboard fuel converter that converts a liquid fuel, such as gasoline, into electrical energy whilst the vehicle is driving. This enables the traction battery storage capacity to be reduced, whilst still maintaining an acceptable vehicle driving range. In a previous paper the power requirement of a range extender for a typical C segment passenger car was investigated using drive-cycle modeling over real-world cycles. This paper presents the detailed design of the range extender engine.
Technical Paper

Development of a Light-Duty Commercial Vehicle Demonstrator Featuring a Low-Cost PCB Fuel Cell

2022-03-29
2022-01-0696
Today the light-duty commercial market is dominated by internal combustion engine powered vehicles, primarily diesel-powered delivery vans, which contribute to urban air quality issues. Global concerns regarding climate change have prompted zero emission vehicles to be mandatory in many markets as soon as 2035. For the light-duty commercial vehicle sector there is significant interest in pure electric vehicles. However, for some markets, or usage cases, electric vehicles may not be the best solution due to practical limitations of battery energy storage capacity or recharging times. For such applications there is growing interest in hydrogen fuel cells as a zero emissions alternative. Bramble Energy’s patented printed circuit board (PCB) fuel cell technology (PCBFC™) enables the use of cost-effective production methods and materials from the PCB industry to reduce the cost and complexity of manufacturing hydrogen fuel cell stacks.
Journal Article

48 V High-power Battery Pack for Mild-Hybrid Electric Powertrains

2020-04-14
2020-01-0441
Mild hybridisation, using a 48 V system architecture, offers fuel consumption benefits approaching those achieved using high-voltage systems at a much lower cost. To maximise the benefits from a 48 V mild-hybrid system, it is desirable to recuperate during deceleration events at as high a power level as possible, whilst at the same time having a relatively compact and low cost system. This paper examines the particular requirements of the battery pack for such a mild-hybrid application and discusses the trade-offs between battery power capabilities and possible fuel consumption benefits. The technical challenges and solutions to design a 48 V mild-hybrid battery pack are presented with special attention to cell selection and the thermal management of the whole pack. The resulting battery has been designed to achieve a continuous-power capability of more than 10 kW and a peak-power rating of up to 20 kW.
Technical Paper

GPS Based Energy Management Control for Plug-in Hybrid Vehicles

2015-04-14
2015-01-1226
In 2012 MAHLE Powertrain developed a range-extended electric vehicle (REEV) demonstrator, based on a series hybrid configuration, and uses a battery to store electrical energy from the grid. Once the battery state of charge (SOC) is depleted a gasoline engine (range extender) is activated to provide the energy required to propel the vehicle. As part of the continuing development of this vehicle, MAHLE Powertrain has developed control software which can intelligently manage the use of the battery energy through the combined use of GPS and road topographical data. Advanced knowledge of the route prior to the start of a journey enables the software to calculate the SOC throughout the journey and pre-determine the optimum operating strategy for the range extender to enable best charging efficiency and minimize NVH. The software can also operate without a pre-determined route being selected.
X