Refine Your Search

Search Results

Viewing 1 to 6 of 6
Technical Paper

Dual-Arm Dynamic Motion Simulation and Prediction of Joint Constraint Loads Using Optimization

Our previous formulation for optimization-based dynamic motion simulation of a serial-link human upper body (from waist to right hand) is extended to predict the motion of a tree-structured human model that includes the torso, right arm, and left arm, with various applied external loads. The dynamics of tree-structured systems is formulated and implemented. The equations of motion for the tree structures must be derived carefully when dealing with the connection link. The optimum solution results show realistic dual-arm human motions and the required joint actuator torques. In the second part of this paper, a new method is introduced in which the constraint forces and moments at the joints are calculated along with the motion and muscle-induced actuator torques. A set of fictitious joints are modeled in addition to the real joints.
Technical Paper

Layout Design using an Optimization-Based Human Energy Consumption Formulation

An optimization-based method for layout design (also called equipment layout) is presented that is based upon kinetic functions also introduced in this paper. The layout problem is defined by the method whereby positions of target points are specified in the environment surrounding a human. The problem is of importance to ergonomists, vehicle/cockpit packaging engineers, designers of manufacturing assembly lines, and designers concerned with the placement of lever, knobs, and controls in the reachable workspace of a human, but also to users of digital human modeling code, where digital prototyping has become a valuable tool. The method comprises kinematically-driven constraints for reaching the target points and for satisfying the joint ranges of motion. The algorithm is driven by a cost function (also called objective function) that is kinetic in nature to minimize approximate energy consumption and visual discomfort.
Technical Paper

Motion Prediction and Inverse Dynamics for Human Upper Extremities

Santos™, a digital human avatar developed at The University of Iowa, exhibits extensive modeling and simulation capabilities. Santos™ is a part of a virtual environment for conducting human factors analysis consisting of posture prediction, motion prediction, and ergonomics studies. This paper presents part of the functionality in the Santos™ virtual environment, which is an optimization-based algorithm for simulating dynamic motion of Santos™. The joint torque and muscle power during the motion are also calculated within the algorithm. Mathematical cost functions that evaluate human performance are essential to any effort that would evaluate and compare various ergonomic designs. It is widely accepted that the ergonomic design process is actually an optimization problem with many design variables. This effort is basically a task-based approach that believes humans assume different postures and exert different forces to accomplish different tasks.
Technical Paper

Optimization-Based Dynamic Motion Simulation and Energy Expenditure Prediction for a Digital Human

This paper presents an optimization-based algorithm for simulating the dynamic motion of a digital human. We also formulate the metabolic energy expenditure during the motion, which is calculated within our algorithm. This algorithm is implemented and applied to Santos™, an avatar developed at The University of Iowa. Santos™ is a part of a virtual environment for conducting digital human analysis consisting of posture prediction, motion prediction, and physiology studies. This paper demonstrates our dynamic motion algorithm within the Santos™ virtual environment. Mathematical evaluations of human performance are essential to any effort to compare various ergonomic designs. In fact, the human factors design process can be formulated as an optimization problem that maximizes human performance. In particular, an optimal design must be found while taking into consideration the effects of different motions and hand loads corresponding to a number of tasks.
Journal Article

General Biped Motion and Balance of a Human Model

We propose an algorithm of predicting dynamic biped motions of Santos™ human model. An alternative and efficient formulation of the Zero-Moment Point (ZMP) for dynamic balance and the approximated ground reaction forces/moments are derived from the resultant reaction loads, which includes the gravity, the externally applied loads, and the inertia. The optimization problem is formulated to address the redundancy of the human task, where the general biped and the task-specific constraints are imposed depending on the task requirements. The proposed method is fully predictive and generates physically feasible human-like motions from scratch without any input reference from motion capture or animation. The resulting generated motions demonstrate how a human reacts effectively to different external load conditions in performing a given task by showing realistic features of cause and effect.
Journal Article

Posture Prediction with External Loads – A Pilot Study

As the need for more advanced human modeling tools has grown, so has the focus on research and development with posture-prediction capabilities for the design and analysis of products, and for the study of human behavior. Virtual humans have grown from digital mannequins with limited fidelity, to realistic avatars with predictive capabilities. Now, one of the frontiers with posture prediction is the incorporation of external loads and joint torques. Although advancements have been made with dynamic motion prediction, relatively little work has been conducted with external load-based posture prediction. Drawing on past success with optimization-based kinematic posture prediction implemented with the virtual human Santos™, we present a new method for considering external loads. A pilot study is conducted whereby equations for static equilibrium are incorporated in the optimization formulation.