Refine Your Search

Search Results

Viewing 1 to 11 of 11
Journal Article

Modeling and Validation of 48V Mild Hybrid Lithium-Ion Battery Pack

2018-04-03
2018-01-0433
As part of the midterm evaluation of the 2022-2025 Light-Duty Vehicle Greenhouse Gas (GHG) Standards, the U.S. Environmental Protection Agency (EPA) developed simulation models for studying the effectiveness of 48V mild hybrid electric vehicle (MHEV) technology for reducing CO2 emissions from light-duty vehicles. Simulation and modeling of this technology requires a suitable model of the battery. This article presents the development and validation of a 48V lithium-ion battery model that will be integrated into EPA’s Advanced Light-Duty Powertrain and Hybrid Analysis (ALPHA) vehicle simulation model and that can also be used within Gamma Technologies, LLC (Westmont, IL) GT-DRIVE™ vehicle simulations. The battery model is a standard equivalent circuit model with the two-time constant resistance-capacitance (RC) blocks.
Journal Article

Benchmarking a 2016 Honda Civic 1.5-Liter L15B7 Turbocharged Engine and Evaluating the Future Efficiency Potential of Turbocharged Engines

2018-04-03
2018-01-0319
As part of the U.S. Environmental Protection Agency’s (EPA’s) continuing assessment of advanced light-duty (LD) automotive technologies to support the setting of appropriate national greenhouse gas (GHG) standards and to evaluate the impact of new technologies on in-use emissions, a 2016 Honda Civic with a 4-cylinder 1.5-liter L15B7 turbocharged engine and continuously variable transmission (CVT) was benchmarked. The test method involved installing the engine and its CVT in an engine-dynamometer test cell with the engine wiring harness tethered to its vehicle parked outside the test cell. Engine and transmission torque, fuel flow, key engine temperatures and pressures, and onboard diagnostics (OBD)/Controller Area Network (CAN) bus data were recorded.
Technical Paper

Progress in the Development of Tier 2 Light-Duty Diesel Vehicles

2004-03-08
2004-01-1791
The U.S. Environmental Protection Agency (U.S. EPA) has been conducting a test program to evaluate efforts to bring light-duty diesel vehicles into compliance with U.S. Federal Tier 2 Light-duty Emission Standards. Between April 2002 and October 2003, five advanced prototype light-duty diesel vehicles equipped with NOx adsorption catalysts, PM-traps, and diesel oxidation catalysts were tested at the U.S. EPA's National Vehicle and Fuel Emission Laboratory (NVFEL). The vehicle testing was conducted using low sulfur (<15 ppm) diesel fuel. All of the tested vehicles demonstrated the considerable progress recently made by vehicle manufacturers and systems integrators in applying advanced NOx and PM emission control technology to light duty diesel vehicles in anticipation of the U.S. Light-duty Tier 2 emission standards. PM emissions for all of the vehicles were well below the Tier 2 Bin-5 emission levels.
Technical Paper

High-Efficiency NOx and PM Exhaust Emission Control for Heavy-Duty On-Highway Diesel Engines - Part Two

2001-09-24
2001-01-3619
A 5.9 liter medium-heavy-duty diesel engine was modified to approximate the emissions performance of a MY 2004 US heavy-duty on-highway engine. The engine was tested with and without a diesel exhaust emission control system consisting of catalyzed diesel particulate filters and NOx adsorber catalysts arranged in a dual-path configuration. The goal of this project was to achieve hot-start HDDE-FTP emissions consistent with the recently announced 2007 U.S. heavy-duty engine emissions standards. Supply of hydrocarbon reductant for NOx adsorber regeneration was accomplished via a secondary exhaust fuel injection system. An alternating restriction of the exhaust flow between the two flow paths allowed injection and adsorber regeneration to occur under very low space velocity conditions. NOx and PM emissions over the hot-start portion of the HDDE-FTP transient cycle were 0.13 g/bhp-hr and less than 0.002 g/bhp-hr, respectively.
Technical Paper

Testing of the Toyota Avensis DPNR at U.S. EPA-NVFEL

2002-10-21
2002-01-2877
An advanced prototype of the Toyota Avensis light-duty diesel vehicle equipped with a version of Toyota's DPNR exhaust emission control system was tested at the U.S. EPA - NVFEL facility. The vehicle is under development by Toyota Motor Corporation for introduction in Europe. While this particular model is not anticipated to be offered for sale in the U.S., EPA evaluated the vehicle to gauge the current state of light-duty diesel vehicle technology. The vehicle was tested using a low sulfur (6 ppm) diesel fuel with a cetane number that was improved to near typical European levels (∼50 cetane). Emission levels over the FTP75 consistent with U.S. Federal Light-Duty Tier 2 emission standards were achieved at levels of fuel economy that are competitive with current light-duty diesel passenger vehicles offered for sale in the U.S. The vehicle was tested with relatively low accumulated mileage.
Technical Paper

Modeling and Validation of 12V Lead-Acid Battery for Stop-Start Technology

2017-03-28
2017-01-1211
As part of the Midterm Evaluation of the 2017-2025 Light-duty Vehicle Greenhouse Gas Standards, the U.S. Environmental Protection Agency (EPA) developed simulation models for studying the effectiveness of stop-start technology for reducing CO2 emissions from light-duty vehicles. Stop-start technology is widespread in Europe due to high fuel prices and due to stringent EU CO2 emissions standards beginning in 2012. Stop-start has recently appeared as a standard equipment option on high-volume vehicles like the Chevrolet Malibu, Ford Fusion, Chrysler 200, Jeep Cherokee, and Ram 1500 truck. EPA has included stop-start technology in its assessment of CO2-reducing technologies available for compliance with the standards. Simulation and modeling of this technology requires a suitable model of the battery. The introduction of stop-start has stimulated development of 12-volt battery systems capable of providing the enhanced performance and cycle life durability that it requires.
Technical Paper

Modeling and Controls Development of 48 V Mild Hybrid Electric Vehicles

2018-04-03
2018-01-0413
The Advanced Light-Duty Powertrain and Hybrid Analysis tool (ALPHA) was created by EPA to evaluate the Greenhouse Gas (GHG) emissions of Light-Duty (LD) vehicles. ALPHA is a physics-based, forward-looking, full vehicle computer simulator capable of analyzing various vehicle types combined with different powertrain technologies. The ALPHA desktop application was developed using MATLAB/Simulink. The ALPHA tool was used to evaluate technology effectiveness and off-cycle technologies such as air-conditioning, electrical load reduction technology and road load reduction technologies of conventional, non-hybrid vehicles for the Midterm Evaluation of the 2017-2025 LD GHG rule by the U.S. Environmental Protection Agency (EPA) Office of Transportation and Air Quality (OTAQ).
Technical Paper

Tier 2 Intermediate Useful Life (50,000 Miles) and 4000 Mile Supplemental Federal Test Procedure (SFTP) Exhaust Emission Results for a NOx Adsorber and Diesel Particle Filter Equipped Light-Duty Diesel Vehicle

2005-04-11
2005-01-1755
Due to its high efficiency and superior durability the diesel engine is again becoming a prime candidate for future light-duty vehicle applications within the United States. While in Europe the overall diesel share exceeds 40%, the current diesel share in the U.S. is 1%. Despite the current situation and the very stringent Tier 2 emission standards, efforts are being made to introduce the diesel engine back into the U.S. market. In order to succeed, these vehicles have to comply with emissions standards over a 120,000 miles distance while maintaining their excellent fuel economy. The availability of technologies such as high-pressure common-rail fuel systems, low sulfur diesel fuel, NOx adsorber catalysts (NAC), and diesel particle filters (DPFs) allow the development of powertrain systems that have the potential to comply with the light-duty Tier 2 emission requirements. In support of this, the U.S.
Technical Paper

Demonstration of Tier 2 Emission Levels for Heavy Light-Duty Trucks

2000-06-19
2000-01-1957
The U.S. Environmental Protection Agency initiated a program to demonstrate feasibility of the Tier 2 emissions standards for the largest vehicles regulated under the new standards. Advanced emission control systems were developed and evaluated using a large 1999 sport utility vehicle and a large 1999 light-duty pickup truck. The trucks were originally certified to California LEV-I or Federal Tier 1 emission standards. Advanced, high-cell density, ceramic and metallic substrate three-way catalysts were thermally aged to the equivalent of 80,000 km (50,000 miles) and integrated into the exhaust systems for evaluation. Low mass, thermally insulated exhaust system components were fabricated and evaluated. Engine control strategies were modified via ROM-emulation and powertrain control module (PCM) flash reprogramming. Both of the tested trucks demonstrated FTP emissions at levels below 2004 U.S Federal Tier 2 emissions standards.
Technical Paper

Real-World Emission Modeling and Validations Using PEMS and GPS Vehicle Data

2019-04-02
2019-01-0757
Portable Emission Measurement Systems (PEMS) are used by the U.S. Environmental Protection Agency (EPA) to measure gaseous and particulate mass emissions from vehicles in normal, in-use, on-the-road operation to support many of its programs, including assessing mobile source emissions compliance, emissions factor assessment for in-use fleet modeling, and collection of in-use vehicle operational data to support vehicle simulation modeling programs. This paper discusses EPA’s use of Global Positioning System (GPS) measured altitude data and electronically logged vehicle speed data to provide real-world road grade data for use as an input into the Gamma Technologies GT-DRIVE+ vehicle model. The GPS measured altitudes and the CAN vehicle speed data were filtered and smoothed to calculate the road grades by using open-source Python code and associated packages.
Technical Paper

Further Advances in Demonstration of a Heavy-Duty Low NOX System for 2027 and Beyond

2024-04-09
2024-01-2129
Multiple areas in the U.S. continue to struggle with achieving National Ambient Air Quality Standards for ozone. These continued issues highlight the need for further reductions in NOX emission standards in multiple industry sectors, with heavy-duty on-highway engines being one of the most important areas to be addressed. Starting in 2014, CARB initiated a series of technical demonstration programs aimed at examining the feasibility of achieving up to a 90% reduction in tailpipe NOX, while at the same time maintaining a path towards GHG reductions that will be required as part of the Heavy-Duty Phase 2 GHG program. These programs culminated in the Stage 3 Low NOX program, which demonstrated low NOX emissions while maintaining GHG emissions at levels comparable to the baseline engine.
X