Refine Your Search

Topic

Search Results

Journal Article

Impact of Control Methods on Dynamic Characteristic of High Speed Solenoid Injectors

2014-04-01
2014-01-1445
Accurate control of both the timing and quantity of injection events is critical for engine performance and emissions. The most serious problem which reduces the accuracy of the control operation in such systems is a time delay of the responsiveness for the opening and closing operation of the electromagnetic valve. Modern electronic control systems should be capable of driving high speed solenoid injectors at a very fast switch frequency with high efficiency and acceptable power requirements. In this paper, the dynamic characteristic of a high speed servo-hydraulic solenoid injector for diesel engine, with different driving circuits and control methods, is investigated. A pre-energizing control strategy based on a dual power supply is applied to speed up the opening response time of the injectors.
Technical Paper

Characteristics of Auto-Ignition for Lubricants and Lubricant/Gasoline Based on an Innovative Single Droplet Test System

2020-04-14
2020-01-1428
Due to the advantages of low weight, low emissions and good fuel economy, downsized turbocharged gasoline direct injection (GDI) engines are widely-applied nowadays. However, Low-Speed Pre-Ignition (LSPI) phenomenon observed in these engines restricts their improvement of performance. Some researchers have shown that auto-ignition of lubricant in the combustion chamber has a great effect on the LSPI frequency. To study the auto-ignition characteristics of lubricant, an innovative single droplet auto-ignition test system for lubricant and its mixture is designed and developed, with better accuracy and effectiveness. The experiments are carried out by hanging lubricant droplets on the thermocouple node under active thermo-atmosphere provided by a small “Dibble burner”. The auto-ignition process of lubricant droplets is recorded by a high-speed camera.
Journal Article

Study of the Combustion Characteristics of a HCCI Engine Coupled with Oxy-Fuel Combustion Mode

2017-03-28
2017-01-0649
The present work proposed to implement oxy-fuel combustion mode into a homogeneous charge compression ignition engine to reduce complexity in engine emissions after-treatment and lower carbon dioxide emission. The combination of oxy-fuel combustion mode with homogeneous charge compression ignition engine can be further optimized by the utilization of direct high temperature and pressure water injection to improve cycle performance. A retrofitted conventional diesel engine coupled with port fuel injection and direct water injection is utilized in this study. A self-designed oxygen and carbon dioxide mixture intake system with flexible oxygen fraction adjustment ability is implemented in the test bench to simulate the adoption of exhaust gas recirculation. Water injection system is directly installed in the combustion chamber with a modified high speed solenoid diesel injector.
Journal Article

Characteristics of Lubricants on Auto-ignition under Controllable Active Thermo-Atmosphere

2016-04-05
2016-01-0889
Downsizing gasoline direct injection engine with turbo boost technology is the main trend for gasoline engine. However, with engine downsizing and ever increasing of power output, a new abnormal phenomenon, known as pre-ignition or super knock, occurs in turbocharged engines. Pre-ignition will cause very high in-cylinder pressure and high oscillations. In some circumstances, one cycle of severe pre-ignition may damage the piston or spark plug, which has a severe influence on engine performance and service life. So pre-ignition has raised lots of attention in both industry and academic society. More and more studies reveal that the auto-ignition of lubricants is the potential source for pre-ignition. The auto-ignition characteristics of different lubricants are studied. This paper focuses on the ignition delay of different lubricants in Controllable Active Thermo-Atmosphere (CATA) combustion system.
Journal Article

Characterization of the Near-Field Spray and Internal Flow of Single-Hole and Multi-Hole Sac Nozzles using Phase Contrast X-Ray Imaging and CFD

2011-04-12
2011-01-0681
It is well know that the internal flow field and nozzle geometry affected the spray behavior, but without high-speed microscopic visualization, it is difficult to characterize the spray structure in details. Single-hole diesel injectors have been used in fundamental spray research, while most direct-injection engines use multi-hole nozzle to tailor to the combustion chamber geometry. Recent engine trends also use smaller orifice and higher injection pressure. This paper discussed the quasi-steady near-nozzle diesel spray structures of an axisymmetric single-hole nozzle and a symmetric two-hole nozzle configuration, with a nominal nozzle size of 130 μm, and an attempt to correlate the observed structure to the internal flow structure using computational fluid dynamic (CFD) simulation. The test conditions include variation of injection pressure from 30 to 100 MPa, using both diesel and biodiesel fuels, under atmospheric condition.
Journal Article

Effect of Injection Parameters on Spray Characteristics of Urea-SCR System

2013-04-08
2013-01-1067
Urea-SCR system is one of the after-treatment methods for diesel engines, which could effectively reduce the NOX emissions and enable diesel engines to meet increasingly stringent emission legislations. Within the urea-SCR system, characteristics of urea-solution spray, especially the distribution uniformity of spray droplets as well as gaseous NH₃ within the exhaust pipe, play an important role in the efficiency of catalytic reduction. In this paper, an SCR spray visualization test bench was set up. Urea-solution from a non-air-assist injector is injected into the steady stream of simulated exhaust gas flow. The transient characteristics of spray are recorded by high-speed photography. Specific spray characteristics in the original photographs, i.e., mixing distance and degree of uniformity are extracted. The influence of injection pressure and injection angle on spray characteristics are tested in different sets of experiments.
Journal Article

Simulation Study of Water Injection Strategy in Improving Cycle Efficiency Based on a Novel Compression Ignition Oxy-Fuel Combustion Engine

2018-04-03
2018-01-0894
The present work discusses a novel oxy-fuel combustion cycle utilized in compression ignition internal combustion engine. The most prominent feature of this cycle is that the air intake is replaced by oxygen; therefore nitric oxide (NOX) emission is eliminated. The enrichment of oxygen leads to higher flame speed and mass fraction consumption rate; on the other hand, the high concentration of oxygen presented during combustion will result in intense pressure rise rate which may cause severe damage to engine hardware. As water injection is already utilized in gasoline engine to control knocking, the utilization of water injection in optimizing oxy-fuel combustion process has been tested in this study. To understand the relationship between water injection strategy and cycle efficiency, computational fluid dynamics (CFD) simulations were carried out. The model was carefully calibrated with the experimental results; the errors were controlled within 3%.
Technical Paper

Effect of Coflow Temperature on the Characteristics of Diesel Spray Flames and its Transient HC Distribution under Atmospheric Conditions

2007-10-29
2007-01-4028
A Controllable Active Thermo-Atmosphere (CATA) Combustor enables the investigation of stabilization mechanisms in an environment that decouples the turbulent chemical kinetics from the complex recirculating flow. Previous studies on combustion of the low-pressure fuel jets in the Controllable Active Thermo-Atmosphere (CATA) showed non-linear effect of coflow temperature on autoignition delay and the randomness of autoignition sites. In this work, a diesel spray is injected into the CATA with the injection pressure at 20MPa from a single-hole injector and the autoignition and combustion process of the spray is recorded by a high-speed camera video. The multipoint autoignition of diesel spray is observed in the CATA and the subsequent combustion process is analyzed. The results show that autoignition phenomenon plays an important role in the stabilization of the lifted flames of diesel spray under low coflow temperature.
Technical Paper

Effect of Additives on Diesel Spray Flames in a Controllable Active Thermo-Atmosphere

2008-04-14
2008-01-0931
The active components, such as OH and their concentrations in the coflow, have a strong effect on the combustion process of diesel fuel spray flames in the Controllable Active Thermo-Atmosphere (CATA), which then will affect the soot incandescence of the spray flames. CO2 and H2O2, the additives which have contrary effect on the concentration of the active components, were mixed separately into the thermo-atmosphere before the jet spray were issued into the coflow, which changed the boundary condition around the central jet and influenced the combustion characteristics and soot incandescence. The combustion characteristics such as ignition delay and flame liftoff height of the central spray flames are measured and the linkage between these two parameters is investigated at different coflow temperatures.
Technical Paper

Stratified Mixture Formation and Combustion Process for Wall-guided Stratified-charge DISI Engines with Different Piston Bowls by Simulation

2010-04-12
2010-01-0595
This paper presents the simulation of in-cylinder stratified mixture formation, spray motion, combustion and emissions in a four-stroke and four valves direct injection spark ignition (DISI) engine with a pent-roof combustion chamber by the computational fluid dynamics (CFD) code. The Extended Coherent Flame Combustion Model (ECFM), implemented in the AVL-Fire codes, was employed. The key parameters of spray characteristics related to computing settings, such as skew angle, cone angle and flow per pulse width with experimental measurements were compared. The numerical analysis is mainly focused on how the tumble flow ratio and geometry of piston bowls affect the motion of charge/spray in-cylinder, the formation of stratified mixture and the combustion and emissions (NO and CO₂) for the wall-guided stratified-charge spark-ignition DISI engine.
Technical Paper

Simulations of Key Design Parameters and Performance Optimization for a Free-piston Engine

2010-04-12
2010-01-1105
To develop a free-piston engine-alternator integrative power system for Hybrid Electric Vehicles, the key design parameters, such as reciprocating mass of the piston assembly, compression ratio, the ignition timing, the engine fuel consumption rate and power output, are studied based on the simulation. The results show that, the system simulation model of the free piston engine can predict the in-cylinder pressure vs. the piston's displacement being accurate enough as the test results from reported reference. The model can be employed to optimize the design parameters and to predict the fuel economy and power output. It provides the methods and bases for the free piston engine design and predicting the main performance parameters' values.
Technical Paper

Spray Characteristics of Biodiesel and Diesel Fuels under High Injection Pressure with a Common Rail System

2010-10-25
2010-01-2268
Biodiesel has been paid more and more attention as a renewable fuel due to some excellent properties such as renewable, high cetane number, ultralow sulfur content, no aromatic hydrocarbon, high flash point, low CO2 emission when compared with diesel. While others physical properties like high viscosity, high surface tension, big density and bad volatility would spoil the spray characteristics of biodiesel fuel, which will affect the thermal efficiency when running in diesel engine. Accompanied with constant volume vessel and high speed video camera system, a high pressure common rail system, which could provide an injection pressure of 180 MPa, is used to investigate the characteristics of jatropha curcas biodiesel, palm oil biodiesel and diesel fuel. The effects of injection pressures and ambient densities on spray characteristics of these fuels are studied.
Technical Paper

Optimization of Control Strategy for Engine Start-stop in a Plug-in Series Hybrid Electric Vehicle

2010-10-25
2010-01-2214
Plug-in hybrid electric vehicles (PHEVs) provide significantly improvement in fuel economy over conventional vehicles as well as reductions in greenhouse gas and petroleum. Numerous recent reports regarding control strategy, power train configuration, driving pattern, all electric range (AER) and their effects on fuel consumption and electric energy consumption of PHEVs are reported. Meanwhile, the control strategy for engine start-stop and mileage between recharging events from the electricity grid also has an important influence on the petroleum displacement potential of PHEVs, but few reports are published. In this paper, a detailed simulation model is set up for a plug-in series hybrid electric vehicle (PSHEV) employing the AVL CRUISE. The model was employed to predict the AER of the baseline PSHEV using rule-based logical threshold switching control strategy.
Technical Paper

Power Matching and Control Strategy of Plug-in Series Hybrid Electric Car

2010-10-25
2010-01-2195
In this paper, based on the plug-in series hybrid electric vehicle development project, the vehicle technology solutions and the match of power system parameters were analyzed. The vehicle control strategies were identified and optimized according to plug-in hybrid vehicle features. The plug-in series hybrid, rule-based logic threshold switching control strategy, charge depleting (CD) mode and charge-sustaining (CS) mode are chosen according to the key factors, such as the environment, performance requirements, technical requirements and cost. And then the structure and model of vehicle control strategy were established to carry out vehicle energy management and power system control. The parameter selection, electric drive system matching, energy storage system design based on the requirement of vehicle performance, system architecture and control strategy are presented.
Technical Paper

Effect of Direct Water Injection Timing on Common Rail Diesel Engine Combustion Process and Efficiency Enhancement

2017-10-08
2017-01-2281
The present work aims at optimizing diesel engine combustion efficiency with optimized water injection strategy. The engine had been modified based on a two-cylinder mechanical pump diesel engine into common rail diesel engine with capability of direct water injection. The direct water injection system was designed and manufactured independently. An air-fluid booster was utilized to establish the water injection pressure up to 40MPa. Customized diesel injector was selected to be used as water injector in this study. Water injection strategy was optimized in detail with injection timing around TDC which ranges from 12°CA BTDC to -5°CA BTDC under 10 bar IMEP. The engine efficiency can be improved under selected water injection strategy due to the increment of work fluid in the combustion chamber. Moreover, the nitric oxides emissions show decrement around 10%.
Technical Paper

Cyclic Variations of Argon Power Cycle Engine with Fuel of Hydrogen

2017-10-08
2017-01-2409
The work of this paper aimed at investigating the cyclic variations of argon power cycle engine with fuel of hydrogen at lean burn operating conditions. The engine had been modified based on a 0.402 L, single-cylinder diesel engine into spark ignition engine with a port fuel injection system. The influencing factors on the cyclic variations, such as ignition timing, engine speed and compression ratio, were tested in this study. In all tests, the throttle opened at 0%, and the excess oxygen coefficient was maintained at 2.3. The results showed that as the ignition timing retards, CoVPmax and CoV(dp/dφ)max of argon power cycle engine increased, while CoVIMEP decreased firstly and increased afterward. And there is an ignition timing to make the lowest CoVIMEP, which is not consistent with MBT.
Technical Paper

Effect of First Cycle Fuel Injection Timing on Performance of a PFI Engine during Quick Start for HEV Application

2011-04-12
2011-01-0886
Idle stopping is one of the most important fuel saving methods for hybrid electric vehicle (HEV). While the enriched injection strategy which was employed to ensure reliable ignition of first cycle will leads to even more fuel film stayed in the intake port, all of the liquid film will evaporate randomly and interfere the mixture air-fuel ratio of the followed cycles. The fuel transport of the first cycle should be enhanced to reduce the residual fuel film, and then the control of the cycle-by-cycle air-fuel ratio will become easier and the combustion and HC emissions will also be better. In this paper the mixture preparation characteristics of the unfired first cycle, as well as the combustion and HC emissions characteristics of the fired first cycle under various injection timing strategies such as close-valve injection, mid-valve injection, and open-valve injection were investigated.
Technical Paper

A Study on the Factors Affecting Heated Wall Impinging Characteristics of SCR Spray

2011-04-12
2011-01-1311
Many studies show that under diesel engine operating conditions, SCR reductant sprays will impinge on the wall of exhaust pipes. In order to understand this impinging process of SCR reductant spray, and to analyze what factors affect it, a test bench was set up by means of high speed video camera. At atmospheric pressure, SCR spray was injected on a heated metal wall, the impacts of wall temperature, injection pressure, injection height and angle on developing characteristics of SCR reductant spray after impinging on the heated wall have been researched and analyzed. The results show that the heated wall temperature has a great impact on the spray developing process, when wall temperature is lower than 405K, after water evaporated the crystallized urea will remain on the wall to block exhaust pipes. When wall temperature is higher, the atomization and evaporation of SCR reductant spray will be better, and the hydrolysis process of urea will be faster.
Technical Paper

Spray Characteristics and Wall-impingement Process with Different Piston Tops for the Multi-hole Injector of DISI Gasoline Engines

2011-04-12
2011-01-1222
Spray characteristics and spray wall-impingement events are the key factors for the direct injection spark ignition (DISI) engines, affecting fuel/air mixture preparation and its combustion process. Thus, the spray characteristics of a multi-hole injector for DISI engines, such as spray tip penetration and spray cone angle were investigated in an optical chamber employing the high-speed shadow photography. Furthermore, the effects of the injection pressure, ambient pressure and piston top shape on the impinging spray development were studied in the optical chamber, when the impinging distance is 26.1 mm, corresponding to about 60 CAD ATDC. In addition, the SMD and wall film thickness of the spray impinging on the piston top were studied by means of CFD technique. The results showed that the ambient pressure had the greater effect on the changes of the spray penetration and spray cone angle than the injection pressure.
Technical Paper

In-Cycle Knocking Detection and Feedback Control Based on In-Cylinder Pressure and Ion Current Signal in a GDI Engine

2016-04-05
2016-01-0816
Due to much higher pressure and pressure rising rate, knocking is always of potential hazards causing damages in the engine and high NOX emissions. Therefore, the researchers have focused on knocking diagnosis and control for many years. However, there is still lack of fast response sensor detecting in-cycle knocking. Until now, the feedback control based on knocking sensor normally adjusts the injection and ignition parameters of the following cycles after knocking appears. Thus in-cycle knocking feedback control which requires a predictive combustion signal is still hard to see. Ion current signal is feasible for real-time in-cylinder combustion detection, and can be employed for misfiring and knocking detection. Based on incylinder pressure and ion current signals, the in-cycle knocking feedback control is investigated in this research. The 2nd-order differential of in-cylinder pressure, which means the response time of pressure rising rate dPR, is employed for knocking prediction.
X