Refine Your Search

Search Results

Viewing 1 to 7 of 7
Journal Article

Ultrasonic Spot Welding of AZ31B to Galvanized Mild Steel

2010-04-12
2010-01-0975
Ultrasonic spot welds were made between sheets of 0.8-mm-thick hot-dip-galvanized mild steel and 1.6-mm-thick AZ31B-H24. Lap-shear strengths of 3.0-4.2 kN were achieved with weld times of 0.3-1.2 s. Failure to achieve strong bonding of joints where the Zn coating was removed from the steel surface indicate that Zn is essential to the bonding mechanism. Microstructure characterization and microchemical analysis indicated temperatures at the AZ31-steel interfaces reached at least 344°C in less than 0.3 s. The elevated temperature conditions promoted annealing of the AZ31-H24 metal and chemical reactions between it and the Zn coating.
Journal Article

Fatigue Behavior of Stainless Steel Sheet Specimens at Extremely High Temperatures

2014-04-01
2014-01-0975
Active regeneration systems for cleaning diesel exhaust can operate at extremely high temperatures up to 1000°C. The extremely high temperatures create a unique challenge for the design of regeneration structural components near their melting temperatures. In this paper, the preparation of the sheet specimens and the test set-up based on induction heating for sheet specimens are first presented. Tensile test data at room temperature, 500, 700, 900 and 1100°C are then presented. The yield strength and tensile strength were observed to decrease with decreasing strain rate in tests conducted at 900 and 1100°C but no strain rate dependence was observed in the elastic properties for tests conducted below 900°C. The stress-life relations for under cyclic loading at 700 and 1100°C with and without hold time are then investigated. The fatigue test data show that the hold time at the maximum stress strongly affects the stress-life relation at high temperatures.
Journal Article

Failure Mode and Fatigue Behavior of Dissimilar Laser Welds in Lap-Shear Specimens of Low Carbon Steel and HSLA Steel Sheets

2015-04-14
2015-01-0706
In this paper, failure modes of dissimilar laser welds in lap-shear specimens of low carbon steel and high strength low alloy (HSLA) steel sheets are investigated based on experimental observations. Micro-hardness tests across the weld zones of dissimilar laser welds were conducted. The hardness values of the fusion zones and heat affected zones are significantly higher than those of the base metals. The fatigue lives and the corresponding failure modes of laser welds as functions of the load ranges are then examined. Optical micrographs of the laser welds before and after failure under quasi-static and cyclic loading conditions are then examined. The failure modes and fatigue behaviors of the laser welds under different loading conditions are different. Under quasi-static loading conditions, a necking failure occurred in the upper low carbon steel sheet far away from the laser weld.
Journal Article

Stress Intensity Factor Solutions for Dissimilar Welds in Lap-Shear Specimens of Steel, Magnesium, Aluminum and Copper Sheets

2015-04-14
2015-01-1754
In this paper, the analytical stress intensity factor and J integral solutions for welds in lap-shear specimens of two dissimilar sheets based on the beam bending theory are first reviewed. The solutions are then presented in the normalized forms. Next, two-dimensional finite element analyses were selectively conducted to validate the analytical solutions based on the beam bending theory. The interface crack parameters, the stress intensity factor solutions, and the J integral solutions for welds in lap-shear specimens of different combinations of steel, aluminum, and magnesium, and the combination of aluminum and copper sheets of different thickness ratios are then presented for convenient fracture and fatigue analyses. The transition thickness ratios for critical crack locations for different combinations of dissimilar materials are then determined from the analytical solutions.
Journal Article

Fatigue Behavior of Dissimilar Ultrasonic Spot Welds in Lap-Shear Specimens of Magnesium and Steel Sheets

2011-04-12
2011-01-0475
Fatigue behavior of dissimilar ultrasonic spot welds in lap-shear specimens of magnesium AZ31B-H24 and hot-dipped-galvanized mild steel sheets is investigated based on experimental observations, closed-form stress intensity factor solutions, and a fatigue life estimation model. Fatigue tests were conducted under different load ranges with two load ratios of 0.1 and 0.2. Optical micrographs of the welds after the tests were examined to understand the failure modes of the welds. The micrographs show that the welds mainly fail from kinked fatigue cracks growing through the magnesium sheets. The optical micrographs also indicate that failure mode changes from the partial nugget pullout mode under low-cycle loading conditions to the transverse crack growth mode under high-cycle loading conditions. The closed-form stress intensity factor solutions at the critical locations of the welds are used to explain the locations of fatigue crack initiation and growth.
Journal Article

Failure Modes of Friction Stir Spot Welds in Lap-Shear Specimens of Dissimilar Advanced High Strength Steels under Quasi-Static and Cyclic Loading Conditions

2012-04-16
2012-01-0479
Failure modes of friction stir spot welds in lap-shear specimens of dissimilar high strength dual phase steel (DP780GA) and hot stamped boron steel (HSBS) sheets are investigated under quasi-static and cyclic loading conditions based on experimental observations. Optical micrographs of dissimilar DP780GA/HSBS friction stir spot welds made by a concave tool before and after failure are examined. The micrographs indicate that the failure modes of the welds under quasi-static and cyclic loading conditions are quite similar. The micrographs show that the DP780GA/HSBS welds mainly fail from cracks growing through the upper DP780GA sheets where the concave tool was plunged into during the welding process. Based on the observed failure modes, a kinked fatigue crack growth model is adopted to estimate fatigue lives.
Journal Article

Failure Mode and Fatigue Behavior of Friction Stir Spot Welds in Lap-Shear Specimens of Dissimilar Advanced High Strength Steels

2013-04-08
2013-01-1023
Failure mode and fatigue behavior of friction stir spot welds made with convex and concave tools in lap-shear specimens of dissimilar high strength dual phase steel (DP780GA) and hot stamped boron steel (HSBS) sheets are investigated based on experiments and a kinked fatigue crack growth model. Lap-shear specimens with the welds were tested under both quasistatic and cyclic loading conditions. Optical micrographs indicate that under both quasi-static and cyclic loading conditions, the welds mainly fail from cracks growing through the upper DP780GA sheets where the tools were plunged in during the welding processes. Based on the observed failure mode, a kinked fatigue crack growth model is adopted to estimate fatigue lives of the welds. In the kinked crack fatigue crack growth model, the stress intensity factor solutions for fatigue life estimations are based on the closed-form solutions for idealized spot welds in lap-shear specimens.
X