Refine Your Search

Search Results

Viewing 1 to 6 of 6
Technical Paper

Performance Test Data of Wet Oxidation Plant for CEEF - CEEF: Controlled Ecology Experiment Facilities

1996-07-01
961558
This waste management process must be capable of treating the various wastes generated within Controlled Ecology Experiment Facilities (CEEF) and operate effectively in and environment in which carbon, oxygen, nitrogen, salts, and other important minerals, exit. The catalytic Wet Oxidation Process (W/O Process) is regarded to be the most feasible candidate process for such waste management. This paper clarifies the performance data and the design data of the actual device. By applying these comparison data, for example, water balance, insoluble part balance, organic part balance, and inorganic balance for CEEF, we were also able to confirm the usefulness and applicability of the actual Wet Oxidation Device.
Technical Paper

Study for Minimizing of Toxic Gaseous Waste in Wet Oxidation Process

1995-07-01
951579
Compared with other applicable processes such as incineration, the catalytic wet oxidation process is considered to be the most practically applicable waste treatment process for the CELSS. In this report, the quantity of carbon monoxide generated in the wet oxidation process is identified and a measure for carbon monoxide minimization is discussed. As a result of a bench test, it became apparent that a non-negligible quantity of carbon monoxide could be generated in the catalytic wet oxidation process. However, it can be expected that this CO content will be reduced to a safe level by applying the wet oxidation process catalyst reactor to CO oxidation.
Technical Paper

Mineral Recovery Systems for Humans in a CELSS

1992-07-01
921237
The recovery of important minerals, salt (NaCI) and potassium (K), in a closed system, namely CELSS is discussed. NaCI is needed for humans, but is potentially harmful to plants. Salt is recovered after wet oxidation of urine. Since Na and K have similar chemical and physical properties, their recovery or separation may require sophisticated methods. Na, CI and K ions are separated from other ions by electrodialysis with univalent selective ion-exchange membranes and then NaCI is obtained separately by a crystalization process. Preliminary experiment on crystalization of NaCI-KCl mixed solutions showed a good separation result.
Technical Paper

A Survey of Catalysts for Wet-Oxidation Waste Management Process

1992-07-01
921401
A series of experiments to evaluate performance of catalysts for CELSS System Wet-oxidation process has been carried out. Data obtained from the experiments show that the noble metal selected for the catalyst gives a good performance in oxidizing Organic Carbon and Organic Nitrogen. The data also show that a catalyst with certain amount of the metal (wt%) shows maximum efficiency in the oxidation; in addition, a catalyst with a different amount of metal gives good performance in producing high quality fertilizer.
Technical Paper

Plant Nutrient Solution Production Subsystem and Mineral Recycling in CEEF

2000-07-10
2000-01-2335
In the Closed Ecology Experiment Facilities (CEEF), waste materials such as plant inedible parts, feces and urine of animal and human, and garbage are to be decomposed to inorganic materials by a physical and chemical (P/C) process; Wet Oxidation (W/O). It is known that significant part of nitrogen (N) in the waste materials is reduced to gaseous nitrogen (N2) through W/O process. There is also some deposition of minerals such as iron (Fe) and phosphorous (P) through W/O process. Nitrogen Fixation Subsystem (NFS) produces ammonia (NH3) which is one of end products of NFS, from N2 separated from module air and hydrogen (H2) derived from electrolyses of water, and also produces nitrate (HNO3) from a part of the NH3 and oxygen (O2) derived from electrolyses of water. As another end product of NFS, ammonium nitrate (NH4NO3) is produced from the HNO3 and a part of the NH3.
Technical Paper

Considerations of Material Circulation in CEEF Based on the Recent Operation Strategy

2003-07-07
2003-01-2453
In the Closed Ecology Experiment Facilities (CEEF), with integrating the Closed Plantation Experiment Facilities (CPEF) and the Closed Animal Breading & Habitation Facilities (CABHF), closed habitation experiments without material exchange with the outside will be conducted after the 2005 fiscal year. Cultivation experiments of about 30 crops and the integrating test of the material circulation system required for the closed habitation experiments have been performed since 2000 fiscal year. Using data reported in these experiments, material circulation in CEEF is simulated based on the recent operation strategy, and the storage capacity needed for the buffer of an air processing subsystem was estimated. In order for two humans to dwell over 120 days, the storage capacities of the carbon dioxide tank, the oxygen tank, and the waste gas tank in CPEF, and the carbon dioxide tank and the oxygen tank in CABHF are 820 g, 2830 g, 4425 g, 1780 g, and 1792 g, respectively.
X