Refine Your Search

Topic

Author

Search Results

Journal Article

Effect of Injection Pressure on Ignition, Flame Development and Soot Formation Processes of Biodiesel Fuel Spray

2010-09-28
2010-32-0053
The effect of injection pressure ranging from 100 to 300MPa on the ignition, flame development and soot formation characteristics of biodiesel fuel spray using a common rail injection system for direct injection (D.I.) diesel engine was investigated. Experiments were carried out in a constant volume vessel under conditions similar to the real engine condition using a single hole nozzle. Biodiesel fuels from two sources namely; palm oil (BDFp) and cooked oil (BDFc) with the commercial JIS#2diesel fuel were utilized in this research. The OH chemiluminescence technique was used to determine the ignition and the lift-off length of the combusting flame. The natural luminosity technique was applied to study the flame development and the two color pyrometry was applied for the soot formation processes. Ignition delay decreased as the injection pressure progressed from 100 to 300MPa. This was as a result of the enhanced mixing achieved at higher injection pressures.
Journal Article

Effect of Spray/Wall Interaction on Diesel Combustion and Soot Formation in Two-Dimensional Piston Cavity

2013-10-15
2013-32-9021
The effects of spray/wall interaction on diesel combustion and soot formation in a two-dimensional piston cavity were studied with a high speed color video camera in a constant volume combustion vessel. The two-dimensional piston cavity was applied to generate the impinging spray flame. In the cavity, the flat surface which plays a role as the cylinder head has a 13.5 degree angle with the injector axis and the impinging point was located 30 mm away from the nozzle tip. Three injection pressures of 100, 150, and 200 MPa and a single hole diesel injector (hole diameter: 0.133mm) were selected. The flame structure and combustion process were examined by using the color luminosity images. Two-color pyrometry was used to measure the line-of sight soot temperature and concentration by using the R and B channels of the color images. The soot mass generated by impinging spray flame is higher than that of the free spray flame.
Technical Paper

Behaviors of Spray Droplets with and without Flat Wall Impingement

2021-09-05
2021-24-0058
Fuel spray impingement on the combustion chamber wall cannot be avoid in direct injection gasoline engines, resulting in insufficient combustion and unburned hydrocarbon/soot emissions from the engines. And the microscopic characteristics of the impinging spray have a close relation with the fuel film formation, which has a direct effect on the engine performance and emissions. Therefore, figuring out the droplet behaviors of the impinging spray is significantly important for improving the engine performance and reducing emissions. However, the microscopic characteristics of the impinging spray have not been deeply understood and the differences between the impinging and free spray are seldom mentioned in previous study. Therefore, particle image analysis (PIA) technique was applied to detect the microscopic characteristics at the capture location in order to track the droplet behaviors of the spray tip during the propagation process.
Technical Paper

Droplet Behaviors of DI Gasoline Wall Impinging Spray by Spray Slicer

2020-04-14
2020-01-1152
Owing to the small size of engines and high injection pressures, it is difficult to avoid the fuel spray impingement on the combustion cylinder wall and piston head in Direct Injection Spark Ignition (DISI) engine, which is a possible source of hydrocarbons and soot emission. As a result, the droplets size and distribution are significantly important to evaluate the atomization and predict the impingement behaviors, such as stick, spread or splash. However, the microscopic behaviors of droplets are seldom reported due to the high density of small droplets, especially under high pressure conditions. In order to solve this problem, a “spray slicer” was designed to cut the spray before impingement as a sheet one to observe the droplets clearly. The experiment was performed in a constant volume chamber under non-evaporation condition, and a mini-sac injector with single hole was used.
Journal Article

Characterization of Internal Flow and Spray Behaviors of Hole-Type Nozzle under Tiny and Normal Injection Quantity Conditions for Diesel Engine

2016-04-05
2016-01-0862
The tiny and normal injection quantity instances usually happen under the multi-injection strategy condition to restrain the uncontrollability of the ignition timing of the homogeneous charge compression ignition (HCCI) combustion concept. Meanwhile, instead of the traditional and fundamental single-hole diesel injector, the axisymmetric multi-hole injectors are usually applied to couple with the combustion chamber under most practical operating conditions. In the current paper, the internal flow and spray characteristics generated by single-hole and multi-hole (10 holes) nozzles under normal (2 mm3/hole) and tiny (0.3 mm3/hole) injection quantity conditions were investigated in conjunction with a series of experimental and computational methods. High-speed video observation was conducted at 10000 and 100000 fps under the condition of 120 MPa rail pressure, 1.5 MPa ambient pressure, room temperature, and nitrogen environment to visualize different spray properties.
Journal Article

Experimental Study on Mixture Formation and Ignition Processes of Spray Injected by Hole-Type Nozzle for DISI Engine

2011-11-08
2011-32-0523
The purpose of this study is to investigate the spray characteristics and ignition stability of gasoline sprays injected from a hole-type nozzle. Using a single-hole VCO (Valve-Covered-Orifice) nozzle, the spray characteristics were studied with LAS (Laser Absorption Scattering) technique, and then flame propagation and ignition stability were investigated inside a high temperature high pressure constant volume vessel using a high speed video camera. The spatial ignition stability of the spray at different locations was tested by adjusting the position of the electrodes. By adjusting the ignition timings, the stable ignition windows for 3 determined locations where the ignition stability was high at a fixed ignition timing were studied. The flame propagation process was examined using high speed shadowgraph method. Experimental results show that when the ignition points are located on the spray axis, the ignition probability is low.
Journal Article

Fuel Spray Evaporation and Mixture Formation Processes of Ethanol/Gasoline Blend Injected by Hole-Type Nozzle for DISI Engine

2012-10-23
2012-32-0018
Ethanol is regarded as the promising alternative fuel for gasoline to meet the strict low emission standard for spark ignition engines. In this study, the spray mixture formation process for different ethanol blended fuels, including E0 (gasoline), E85 (85% volume of ethanol and 15% volume of gasoline) and E100 (ethanol), has been evaluated using hole-type nozzle by the measurement of Laser Absorption Scattering (LAS) technique in a constant volume vessel. Based on the principle of LAS, the quantitative vapor and liquid phase distribution from different ethanol blended fuel can be obtained by the light extinction regime. Aiming to analyze the effect of mixture formation and evaporation for different components of blended fuel or pure gasoline and ethanol, the vapor distribution of gasoline was determined by using p-xylene, which had similar physical properties to gasoline, especially higher boiling temperature components, and higher absorption for ultraviolet.
Technical Paper

Total In-Cylinder Sampling Experiment on Emission Formation Processes in a D.I. Diesel Engine

1990-10-01
902062
An experimental study on emission formation processes, such as these of nitric oxide, particulate and total hydrocarbon in a small direct injection (D.I.) diesel engine was carried out by using a newly developed total in-cylinder sampling technique. The sampling method consisted of rapidly opening a blowdown valve attached to the bottom of the piston bowl, and quickly transferring most of the in-cylinder contents into a large sampling chamber below the piston. No modification of the intake and exhaust ports in a cylinder head was required for the installation of the blowdown apparatus. The sampling experiment gave a history of spatially-averaged emission concentrations in the cylinder. The effects of several engine variables, such as the length-to-diameter ratio of the nozzle hole, the ratio of the piston bowl diameter to the cylinder bore and the intake swirl ratio, on the emission formation processes were investigated.
Journal Article

Effect of Ethanol Ratio on Ignition and Combustion of Ethanol-Gasoline Blend Spray in DISI Engine-Like Condition

2015-04-14
2015-01-0774
To reduce carbon dioxide emission and to relieve the demand of fossil fuels, ethanol is regarded as one of the most promising alternative fuels for gasoline. Recently, using ethanol in the state-of-the-art gasoline engine, direct-injection spark-ignition (DISI) engine, has become more attention by researchers due to less knowledge of the ignition and combustion processes in that engine. In this study, different ethanol-gasoline blended fuels, E0 (100% gasoline), E85 (85% ethanol and 15% gasoline mixed in volume basis) and E100 (100% ethanol) were injected by a valve-covered-orifice (VCO) hole-type nozzle. The experimental environment was set to the condition similar with the near top dead center (TDC) in DISI engine. The high-speed imaging of shadowgraph, OH* chemiluminescence and flame natural luminosity were used to clarify the characteristics of the ignition process, flame development and propagation.
Technical Paper

Effects of Mixture Heterogeneity on Flame Propagation in a Constant Volume Combustion Chamber

1997-10-01
972943
Although mixture formation is considered important in actual spark ignition engines, A full understanding of the combustion characteristics of a heterogeneous mixture has not yet been achieved. In this study, in order to clarify the effects of a heterogeneous concentration distribution of the fuel-air mixture on the flame propagation process, different degrees of heterogeneously distributed mixtures were created by the motion of a pair of perforated plates in a constant volume combustion chamber. The laser Rayleigh scattering method was applied for quantitative visualizations of these mixture distributions. To control the distribution of the mixture concentration and the turbulence intensity independently, the flow in the chamber and its turbulence intensity were also measured by a laser sheet method and the LDV technique.
Technical Paper

Three Dimensional Visualization for Calculated Distributions of Diesel Spray and Flame in the Combustion Chamber of a D.I. Diesel Engine

1997-10-01
972867
Three-Dimensional visualization technique based on volume rendering method has been developed in order to translate a calculated result of diesel combustion simulation into an realistically spray and flame image. This paper presents an overview of diesel combustion model which has been developed at Hiroshima University, a description of the three-dimensional visualization technique, and some examples of spray and flame image generated by this visualization technique.
Technical Paper

Mixture Formation and Combustion Processes of Multi-Hole Nozzle with Micro Orifices for D.I. Diesel Engines

2007-10-29
2007-01-4049
In order to investigate effects of the multi-hole nozzle with micro orifices on mixture formation processes in Direct-Injection Diesel engines, mixture characteristics were examined via an ultraviolet-visible laser absorption scattering (LAS) technique under various injectors. The injection quantity per orifice per cycle was reduced by nozzle hole sizes. The LAS technique can provide the quantitative and simultaneous measurements of liquid and vapor phases concentration distributions inside of the fuel spray. Mass of ambient gas entrained into the spray, liquid/ vapor mass and mean equivalence ratio of total fuel were obtained based on Lambert Beer's law. As a result, the leaner and more homogeneous fuel-gas mixture can be achieved by reducing the nozzle hole diameter, in the meanwhile more ambient gas were entrained into the spray. Moreover, relationships between mixture formation and D.I.
Technical Paper

Effects of Micro-Hole and Ultra-High Injection Pressure on Mixture Properties of D.I. Diesel Spray

2007-07-23
2007-01-1890
Experimental study has been carried out on the effects of the micro-hole nozzle injector and ultra-high injection pressure on the mixture properties of D.I. Diesel engine. A manually operated piston screw pump, High Pressure Generator, was used to obtain ultra-high injection pressures. Three kinds of injection pressures, 100MPa, 200MPa, and 300MPa, were applied to a specially designed injector. Four kinds of nozzle hole diameters, 0.16mm, 0.14mm, 0.10mm, and 0.08mm, were adopted in this study. The laser absorption-scattering (LAS) technique was used to analyze the equivalence ratio distributions, Sauter mean diameter, spray tip penetration length, and other spray characteristics. The analyses of the experimental results show that the micro-hole nozzle and ultra-high injection pressure are effective to increase the turbulent mixing rate and to form the uniform and lean fuel-air mixture.
Technical Paper

Flame Propagation Characteristics in a Heterogeneous Concentration Distribution of a Fuel-Air Mixture

1998-10-19
982563
An experimental study was conducted to investigate the flame propagation characteristics in the presence of a heterogeneous concentration distribution of a fuel-air mixture in order to provide fundamental knowledge of the effects of gaseous mixture concentration heterogeneity on the combustion process. Different propane-air mixture distributions were produced by the reciprocating movements of a pair of perforated plates in a constant volume combustion chamber. The mean equivalence ratio of the fuel-air mixture was varied from 0.7 on the lean side to 1.6 on the rich side, the turbulence intensity in the combustion chamber was also varied at levels of 0.185 m/s, 0.130 m/s, 0.100 m/s, and 0.0 m/s. By an independent control of the mixture distribution and the turbulence intensity in the combustion chamber, the flame structure and flame propagation speed at various heterogeneous levels of the mixture distribution were investigated in detail.
Technical Paper

Vapor/Liquid Behaviors in Split-Injection D.I. Diesel Sprays in a 2-D Model Combustion Chamber

2003-05-19
2003-01-1837
Some experimental investigations have shown that the trade-off curve of NOx vs. particulate of a D.I. diesel engine with split-injection strategies can be shifted closer to the origin than those with a single-pulse injection, thus reducing both particulate and NOx emissions significantly. It is clear that the injection mass ratios and the dwell(s) between injection pulses have significant effects on the combustion and emissions formation processes in the D.I. diesel engine. However, how and why these parameters significantly affect the engine performances remains unexplained. The effects of both injection mass ratios and dwell between injections on vapor/liquid distributions in the split-injection diesel sprays impinging on a flat wall have been examined in our previous work.
Technical Paper

Fuel Spray Combustion of Waste Cooking Oil and Palm Oil Biodiesel: Direct Photography and Detailed Chemical Kinetics

2013-10-14
2013-01-2554
This paper studies the ignition processes of two biodiesel from two different feedstock sources, namely waste cooked oil (WCO) and palm oil (PO). They were investigated using the direct photography through high-speed video observations and detailed chemical kinetics. The detailed chemical kinetics modeling was carried out to complement data acquired using the high-speed video observations. For the high-speed video observations, an image intensifier combined with OH* filter connected to a high-speed video camera was used to obtain OH* chemiluminscence image near 313 nm. The OH* images were used to obtain the experimental ignition delay of the biodiesel fuels. For the high-speed video observations, experiments were done at an injection pressure of 100, 200 and 300 MPa using a 0.16 mm injector nozzle.
Technical Paper

Combustion Performance of Methane Fermentation Gas with Hydrogen Addition under Various Ignition Timings

2022-01-09
2022-32-0043
Hydrogen (H2) addition is widely used for natural gas combustion to improve the engine efficiency. However, less attention was paid on the various ignition timings for the maximum brake torque (MBT) and brake thermal efficiency (BTE). In order to check the ignition timing effect, experiments were performed in a spark ignition engine with engine speed fixed on 1500 revolutions per minute (rpm). Firstly, CH4 was only used for combustion with excess air ratio (λ) changing from 0.8 to 1.4. Then, co-combustion of 50 vol% CH4 and 50 vol% CO2 was checked to simulate methane fermentation gas. Finally, H2 was added with volume percentage varying from 5% to 20%. Among these discussions, torque, brake mean effective pressure (BMEP), BTE and cylinder pressure were evaluated. Based on the results, high efficiency can be achieved by advancing the ignition timing with H2 addition at λ=1.4. However, with H2 addition, the ignition timing should be retarded to obtain higher BTE.
Technical Paper

Two-Dimensional Measurements of the Fuel Vapor Concentration in the Combustion Chamber of a SI Engine with Laser Rayleigh Scattering

1992-10-01
922389
An experimental study was made of the two-dimensional distributions of the fuel vapor concentration simulated by Freon-12 in the combustion chamber of a SI engine. Laser Rayleigh scattering was applied for this remote, nonintrusive and highly space- and time-resolved measurement. The original engine was modified to introduce YAG laser-induced sheet light into the combustion chamber and the scattered light was captured by a CCD camera fitted with a gated double-microchannel plate image intensifier. The results showed that the fuel vapor concentration was highly heterogeneous during the intake stroke and the inhomogeneity decreased in the compression stroke. But, even at the end of the compression stroke, a number of small lumps of inhomogeneous mixture still existed randomly in the engine combustion chamber, which is assumed to cause the heterogeneity of the mixture strength field at the spark discharge.
Technical Paper

Approach to Low NOx and Smoke Emission Engines by Using Phenomenological Simulation

1993-03-01
930612
A phenomenological spray-combustion model of a D.I. Diesel engine was applied to study the engine parameters with potential for reducing NOx and smoke emissions. The spray-combustion model, first developed at the University of Hiroshima in 1976, has been sophisticated by incorporating new knowledge of diesel combustion. The model was verified using data from an experimental, single cylinder, D.I. diesel engine with a bore of 135mm and a stroke of 130mm. After the verification process, calculations were made under a wide range of the engine parameters, such as intake air temperature, intake air pressure, intake swirl ratio, nozzle hole diameter, injection pressure, air entrainment rate into the spray, and injection rate profile. These calculations estimated the effects of the engine parameters on NOx, smoke and specific fuel consumption. As a result of the calculations, an approach for the low NOx and smoke emission engine was found.
Technical Paper

Ignition and Flame Propagation of Spray Compound Mixture

1993-10-01
932711
The ignition and flame propagation processes of a propane-air mixture compounded with a kerosene spray were investigated in order to allow a better understanding of the multi-phase combustion process of the spray compound mixture in a direct injection stratified charge (DISC) engine. The ignition probability and the flame propagation velocity, as functions of the overall equivalence ratio, fraction of propane in the fuel, ignition energy and the Sauter mean diameter of the spray, were measured under atmospheric conditions. The development of the flame kernel and the propagating flame were observed by a high-speed video camera combined with a schlieren system. Adding small amounts of the kerosene spray to the lean propane-air mixture improved the ignition probability. However, the ignition probability depended strongly on the Sauter mean diameter and the ignition energy. Replacing the propane with the kerosene spray in a rich propane-air mixture increased the flame propagation velocity.
X