Refine Your Search

Topic

Search Results

Journal Article

Validation of Sled Tests for Far-Side Occupant Kinematics Using MADYMO

2010-04-12
2010-01-1160
Far-side occupants are not addressed in current government regulations around the world even though they account for up to 40% of occupant HARM in side impact crashes. Consequently, there are very few crash tests with far-side dummies available to researchers. Sled tests are frequently used to replicate the dynamic conditions of a full-scale crash test in a controlled setting. However, in far-side crashes the complexity of the occupant kinematics is increased by the longer duration of the motion and by the increased rotation of the vehicle. The successful duplication of occupant motion in these crashes confirms that a sled test is an effective, cost-efficient means of testing and developing far-side occupant restraints or injury countermeasures.
Technical Paper

Air Bag Induced Injury Mechanisms for Infants in Rear Facing Child Restraints

1997-11-12
973296
The National Highway Traffic Safety Administration (NHTSA) Special Crash Investigations database contains twelve completed cases of child fatalities in rearward facing child seats caused by deploying air bags. Three of these are now available for examination. An additional two cases were investigated by the William Lehman Injury Research Center at the University of Miami School of Medicine. These five cases are examined to evaluate crash environment, injury mechanisms, and circumstances which caused the child to be in front of the passenger side air bag Four of the cases were crashes with impacts with the side of other cars with crash severities less than 15 mph. The predominate injury mechanism was brain and skull injury from a blow transmitted to the rear of the head through the child seat back. In one case, the force to the head was transmitted downward, directly from air bag contact.
Technical Paper

Far-Side Impact Vehicle Simulations with MADYMO

2007-04-16
2007-01-0363
To date, anthropomorphic test devices (ATDs) have not been designed with consideration for human motion in far-side impacts. Previous tests with a cadaver and a BioSID dummy at the Medical College of Wisconsin confirmed that the dummy does not suitably model the human motion. To further evaluate different ATDs in far-side crashes, MAthematical DYnamic MOdeling (MADYMO) was employed. The modeling showed that the motion of a Hybrid III, BioSID, EuroSid1, EuroSID2, or SID2s did not accurately reflect the motion of a human cadaver under the same impact configurations as the cadaver test. The MADYMO human facet model was found to closely reproduce the kinematics of the cadaver test. The effect of varying console designs on occupant kinematics is presented in this paper. The human facet model appears to be a good interim tool for the evaluation of countermeasures in far-side crashes.
Technical Paper

New Method of Vehicle Inspection for Incompatible Crashes

2007-04-16
2007-01-1184
This paper creates a worksheet to thoroughly document vehicle damage during an incompatible vehicle-to-vehicle frontal crash. This data form serves as a supplement to the current and already established NASS inspection forms. It will assist biomechanics research by determining the extent by which incompatibility caused or changed occupants' injuries through structural analysis of the vehicles. This study identifies deficiencies in the current NASS inspection system for compatibility, and develops new measurable parameters to document the crash and associate injury to it.
Technical Paper

Crashworthiness Safety Features in Rollover Crashes

1998-09-29
982296
Rollover crashes continue to be a serious and growing vehicle safety problem. Rollovers account for about 9% of passenger car crashes, and 26% of light truck crashes. Belt use in rollover crashes is about 51%, compared with 62% in planar crashes. Overall, 26.4% of the serious and fatal injuries to occupants exposed to crashes are in rollovers. Among this injured population 74.4% are unbelted. In light trucks, rollovers account for 47.4% of the serious or fatal injuries. Unbelted occupants suffer about 87% of the serious injuries and fatalities in light truck rollovers. The use of safety belts offers a dramatic reduction in injury rates for rollover crashes. For belted occupants of pickup trucks and utility vehicles in rollover crashes, the injury rates are about the same as for belted occupants of passenger cars in planar crashes. Improvementsts in safety belts offer large opportunities in safety.
Technical Paper

Side Impact Risk for 7-13 Year Old Children

2008-04-14
2008-01-0192
The purpose of this paper is to assess the vehicle environment that a child occupant, between the ages of seven and thirteen years old, is exposed to in a real world crash. The focus of analysis is on those child occupants that are seated at the struck side in a lateral collision. This study was based on data extracted from the National Automotive Sampling System / Crashworthiness Data System (NASS/CDS) between years 1991-2006. Analysis was based upon the evaluation of the projected consequence of injury to the child occupants. The societal costs generated as a result of occupant injuries were quantified. The societal cost, or Harm, acts as a measure of consequence of occupant exposure to the vehicle environment, when involved in a collision. The Harm was determined as a function of ΔV, principal direction of force, vehicle extent of damage, the pattern of damage to the vehicle, and the magnitude of intrusion based on the occupant seating position.
Technical Paper

Evaluating Frontal Crash Test Force-Deformation Data for Vehicle to Vehicle Frontal Crash Compatibility

2008-04-14
2008-01-0813
Vehicle stiffness is one of the three major factors in vehicle to vehicle compatibility in a frontal crash; the other two factors are vehicle mass and frontal geometry. Vehicle to vehicle compatibility in turn is an increasingly important topic due to the rapid change in the size and characteristics of the automotive fleet, particularly the increase of the percentage of trucks and SUVs. Due to the non-linear nature of the mechanics of vehicle structure, frontal stiffness is not a properly defined metric. This research is aimed at developing a well defined method to quantify frontal stiffness for vehicle-to-vehicle crash compatibility. The method to be developed should predict crash outcome and controlling the defined metric should improve the crash outcome. The criterion that is used to judge the aggressivity of a vehicle in this method is the amount of deformation caused to the vulnerable vehicles when crashed with the subject vehicle.
Technical Paper

Using CIREN Data to Assess the Performance of the Second Generation of Air Bags

2004-03-08
2004-01-0842
The U.S. Department of Transportation-sponsored Crash Injury Research and Engineering Network (CIREN) program offers a reasonable look at the efficacy of second-generation air bags. This paper examines the data from the William Lehman Injury Research Center (WLIRC). The WLIRC data is a near census of crashes in the Miami-Dade region with occupants that appear to be severely injured. The percentage of deaths among trauma patients in the WLIRC data as a function of delta-V for first-generation air bags was higher than expected at lower delta-V's. There were nine driver fatalities at delta-V's of less than 20 mph (four involving short stature occupants, four with elderly occupants, and one due to significant intrusion and/or vehicle incompatibility). The data supported NHTSA's conclusion that first-generation air bags were too aggressive for occupants in close proximity to the deploying air bag and too aggressive for older persons.
Technical Paper

Foot and Ankle Injuries to Drivers in Between-Rail Crashes

2013-04-08
2013-01-1243
The research question investigated in this study is what are the key attributes of foot and ankle injury in the between-rail frontal crash? For the foot and ankle, what was the type of interior surface contacted and the type of resulting trauma? The method was to study with in-depth case reviews of NASS-CDS cases where a driver suffered an AIS=2 foot or ankle injury in between-rail crashes. Cases were limited to belted occupants in vehicles equipped with air bags. The reviews concentrated on coded and non-coded data, identifying especially those factors contributing to the injuries of the driver's foot/ankle. This study examines real-world crash data between the years 1997-2009 with a focus on frontal crashes involving 1997 and later model year vehicles. The raw data count for between-rail crashes was 732, corresponding to 227,305 weighted, tow-away crashes.
Technical Paper

A More Effective Post-Crash Safety Feature to Improve the Medical Outcome of Injured Occupants

2006-04-03
2006-01-0675
Automatic Crash Notification (ACN) technology provides an opportunity to rapidly transmit crash characteristics to emergency care providers in order to improve timeliness and quality of care provided to occupants in the post crash phase. This study evaluated the relative value of crash attributes in providing useful information to assist in the identification of crashes where occupants may be seriously injured. This identification includes an indication of whether a crash is likely to require a level of emergency response with higher priority than is needed for most crashes reported by ACN Systems. The ability to predict serious injury using groupings of variables has been determined. In this way, the consequence of not transmitting each variable can be estimated. In addition, the incremental benefit of voice communication is shown.
Technical Paper

Effect of Occupant Position and Air Bag Inflation Parameters on Driver Injury Measures

1998-02-23
980637
This paper investigates the effects of driver airbag inflation characteristics, airbag relative position, airbag to dummy relative velocity, and steering column characteristics using a finite element model of a vehicle, air bag, and Hybrid III 50% male dummy. Simulation is conducted in a static test environment using a validated finite element model. Several static simulation tests are performed where the air bag module's position is mounted in a rigid steering wheel and the vertical and horizontal distances are varied relative to the dummy. Three vertical alignments are used: one position corresponds to the head centered on module, another position corresponds to the neck centered on module, and the third position centers the chest on the module. Horizontal alignments vary from 0 mm to 50 mm to 100 mm. All of these tests are simulated using a typical pre-1998 type inflation curve (mass flow rate of gas entering the bag).
Technical Paper

BENEFITS OF THE INFLATABLE TUBULAR STRUCTURE AN INVESTIGATION ON THE CASUALTY ABATEMENT CAPABILITY OF THE BMW HEAD PROTECTION SYSTEM HPS

1998-05-31
986169
Beginning in model year 1997, BMW introduced an innovative head protection system HPS called the Inflatable Tubular Structure (HPS). Tests indicate that the system dramatically reduces the severity of head impacts in side crashes. This investigation is an evaluation of casualty abatement benefits that are derived from applying injury measures based on the HPS test results to the population in US National Accident Sampling System (NASS/CDS). The results of component and vehicle crash tests are summarized. The procedures for estimating benefits are described along with the benefits in terms of injuries mitigated, maximum injuries to occupants mitigated, and fatalities prevented.
Technical Paper

Heart Injuries Among Restrained Occupants in Frontal Crashes

1997-02-24
970392
The William Lehman Injury Research Center has conducted multi-disciplinary investigations of one hundred seventy-eight crashes involving adult occupants protected by safety belts and air bags. In all cases, serious injuries were suspected. Nine cases involved serious heart injuries. These cases are not representative of crashes in general. However, when used in conjunction with National Accident Sampling System; Crashworthiness Data System (NASS/CDS) they provide insight into the most severe injuries suffered by restrained occupants in frontal crashes. Heart injuries are rare, but when they occur they are usually life threatening. NASS/CDS shows that heart injuries comprise about 0.2% of the injuries in frontal tow-away crashes. In the NHTSA file of Special Crash Investigations (SCI) of air bag cases, heart injuries are reported in 1% of the occupants over 15 years of age. Twenty-five percent of the fatally injured occupants had heart injuries, and 83% of those with heart injury died.
Technical Paper

Chest Injury Risks to Drivers for Alternative Air Bag Inflation Rates

1997-02-24
970129
While the present air bag systems have been shown to be highly effective in high severity crashes, undesirable side effects have been reported in some low severity events. The inflation rate of the airbag during deployment has been cited as a factor which induces injuries. A rapid airbag deployment rate is advantageous to provide protection to occupants in severe crashes. On the other hand, airbag aggressivity associated with the high inflation rate can increase injuries in the lower severity crashes. The injury producing forces from the airbag increase as the occupant position becomes closer to the bag at the time of deployment. This paper describes the results of an analytical study to evaluate chest injury measures for reduced inflation rates of a Taurus type air bag in a variety of crash modes. A detailed nonlinear finite element model of an unfolding airbag and a 50th percentile male Hybrid III dummy are used in conjunction with a test buck to simulate frontal crashes.
Technical Paper

Analysis of a Real-World Crash Using Finite Element Modeling to Examine Traumatic Rupture of the Aorta

2005-04-11
2005-01-1293
One of the leading causes of death in automotive crashes is traumatic rupture of the aorta (TRA) or blunt aortic injury (BAI). The risk of fatality is high if an aortic injury is not detected and treated promptly. The objective of this study is to investigate TRA mechanisms using finite element (FE) simulations of reconstructed real-world accidents involving aortic injury. For this application, a case was obtained from the William Lehman Injury Research Center (WLIRC), which is a Crash Injury Research and Engineering Network (CIREN) center. In this selected crash, the case vehicle was struck on the left side with a Principal Direction of Force (PDoF) of 290 degrees. The side structure of the case vehicle crushed a maximum of 0.33 m. The total delta-V was estimated to be 6.2 m/s. The occupant, a 62-year old mid-sized male, was fatally injured. The occupant sustained multiple rib fractures, laceration of the right ventricle, and TRA, among other injuries.
Technical Paper

The Role of Intrusion in Injury Causation in Frontal Crashes

2005-04-11
2005-01-1376
In December 2003, fifteen participating Automobile Manufacturers announced the adoption of voluntary standards for geometric compatibility in frontal crashes. In an October 2003 report, Insurance Institute of Highway Safety (IIHS) estimated that an 8 to 28 percent fatality reduction might be achieved with better geometric and stiffness compatibility (O’Neill, 2003). This benefit was based on comparing the fatality risks of car occupants in car-to-car collisions and in car-to-SUV collisions. Reduced occupant compartment intrusion was cited as the principal advantage gained by compatibility improvements. However, the study did not actually examine the role that intrusion played in causing the fatalities. This study examines the magnitude of serious injuries in frontal crashes that could be addressed by reducing occupant compartment intrusion. Each frontal vehicle-to-vehicle case in William Lehman Injury Research Center (WLIRC) data was examined to determine the cause of each injury.
Technical Paper

Vehicle Frontal Stiffness in a Front to Front Crash

2005-04-11
2005-01-1375
In the effort to understand and solve the frontal crash compatibility problem, one needs to use values of frontal stiffness. Various definitions of stiffness have been used in other studies based on measurements from NHTSA's 35mph frontal NCAP test. Those definitions varied from assuming a linear stiffness based on static crush to more refined ones that vary with time dependent crush. A major consideration in selecting a method is the amount of vehicle damage that occurs in an incompatible crash. To partially address this issue, a method was introduced based on the energy absorbed in a front to front crash at 25mph approach speed. Four alternative definitions of stiffness were studied.
Technical Paper

Alternative Fuel Tanks for Pickups with Sidesaddle Tanks

2005-04-11
2005-01-1427
Seventeen full-scale crash tests were conducted to evaluate technologies to reduce the vulnerability of sidesaddle tanks on full size GM pickup trucks manufactured during the period 1973-1987. These vehicles were alleged by the U.S. Department of Transportation to be vulnerable in severe side impacts. The test program was intended to evaluate designs that would reduce vulnerability in all crash directions. The best test results were obtained by two strategies that relocated the tank to less vulnerable locations. The two locations were: (1) in the cargo bed (bed mounted tank) and (2) underneath the bed, ahead of the rear axle and between the frame rails (center-mounted tank). Tanks mounted in these locations were subjected to a series of crash tests that simulated severe front, side, rear and rollover crashes. The crash environment for these tests was more severe than required by FMVSS 301 “Fuel System Integrity”.
Technical Paper

Simulation of Road Crash Facial Lacerations By Broken Windshields

1987-02-23
870320
The facial laceration test has been proposed as an addition to the dummy injury criteria of Federal Motor Vehicle Safety Standard 208. To better understand laceration conditions as they actually occur, three road crashes of increasing severity, all involving facial laceration by the broken (cracked) windshield and one involving partial ejection, have been simulated physically and analytically. The physical simulations used vehicle test bucks, the Hybrid III head with the chamois facial coverings of the facial laceration test, and a piston - constrained Head Impactor. Computer simulations of the three crashes were also carried out using the CALSPAN 3D “CVS” and the 2D “DRISIM” computer programs. The computer simulations provide insight into the effective mass of the head and body on windshield contact, and the forces, velocities, and accelerations involved.
Technical Paper

Trend of Rear Occupant Protection in Frontal Crashes over Model Years of Vehicles

2009-04-20
2009-01-0377
The National Automotive Sampling System’s Crashworthiness Data System (NASS CDS) was used to study rear occupant injuries in frontal crashes. The risks of injury for the rear passengers of different age groups were calculated and compared to the risks of injury for the front occupants. Furthermore, the risks of injury were investigated for the rear and front adult occupants over model years of vehicles. Distribution of injuries among body regions and vehicle contact points were also investigated for the rear adult occupants. While the rear occupants were more protected than the front occupants in most of the groups studied, an increasing trend was observed in the risk of injury of the rear adult occupants over the model years of the vehicles.
X