Refine Your Search

Search Results

Viewing 1 to 6 of 6
Technical Paper

Simulations of Tire Cornering Properties in Non-Steady State Conditions

Simulations of tire cornering properties with small-amplitude lateral inputs are carried out in non-steady state conditions. The simulation algorithm is derived and the discrete expressions are presented in detail. Based on the simulations, lateral force and aligning moment can be calculated numerically with time-varying yaw angle and lateral displacement as inputs in spatial domain. The flexibility of both tread and carcass along with tire width is taken into account effectively in the simulations, in which the flexibility of carcass includes translating, bending and twisting flexibility. The simulations in non-dimensional form are associated with four tire structure parameters only, which are non-dimensional parameters reflecting the characteristics of tire stiffness, tire width and contact length. Simulation results are validated by test data from step lateral inputs tests. Several typical simulation results are provided.
Technical Paper

Tire Roller Contact Model for Simulation of Vehicle Vibration Input

To improve the quantitative accuracy of vehicle vibration studies, a roller contact tire model with the geometric filtering concept and a method to determine the effective road input are proposed. Computer simulation with the 13 DOF vehicle model for a light truck, based on two different tire models, and relevant outdoor tests for measuring the vehicle accelerations of both sprung and unsprung masses are presented. Comparisons of test data and simulation results show that the roller contact tire model renders much better simulation accuracy than the single point contact tire model. It is concluded that the roller contact tire model is a powerful concept which acts as a geometric filter, giving a simple method to calculate the enveloping effects of tires and the effective road elevation input.
Technical Paper

A Non-steady and Non-linear Tire Model Under Large Lateral Slip Condition

The objective of this study is to develop a non-steady & non-linear tire model for vehicle dynamic simulation and control for extreme lateral slip condition. This model is provided in a semi-analytical form based on the theoretical non-steady state model, presented at 2nd IAVSD Tyre Conference, Feb. 1997[6]. The tire model is based on a quasi-steady state concept, which generates the dynamic forces and moment according to the dynamic effective slip ratio cooperating with the Unified Semi-Empirical Tire Model for Steady State. Satisfying the theoretical boundary conditions at two sides (lowest & highest) in frequency domain, the tire model is capable of describing the transient force & moment characteristics of tires in higher frequency range, Comparing with the “Linear Approximation” model, presented at 4th AVEC Conference, Sept. 1998[4].
Technical Paper

Research on Closed-Loop Comprehensive Evaluation Method of Vehicle Handling and Stability

A closed-loop comprehensive evaluation and a test method for vehicle handling and stability have been studied by using development driving simulator. Simulator test scheme has been designed and carried out with 14 vehicle configurations, and subjective evaluation has been made for easy handling of vehicle by drivers. A closed-loop comprehensive evaluation index has been put forward considering the factors affecting vehicle handling and stability. The reliability of the index has been validated by driver's subjective evaluation. A driver/vehicle/ road closed-loop system model has been established, and the theoretical predictive evaluation has been carried out with 14 vehicle configurations. Simulation showed that similar result for both theoretical predictive evaluation and subjective evaluation.
Technical Paper

An Empirical Tire Model for Non-Steady State Side Slip Properties

In this paper, on the basis of the extant semi-empirical tire models of non-steady state with pure yaw angle input and pure side slip angle input, two empirical tire models of non-steady state side slip properties are established, one is pure yaw angle input, the other is pure side slip angle input, and both of them have been verified by test data. These two models can be used to approximately express tire force within low frequency. They have their own advantages, and make up for the disadvantages of existing tire models. They provide more choice for the simulation of vehicle dynamics.
Journal Article

UniTire Model for Tire Forces and Moments under Combined Slip Conditions with Anisotropic Tire Slip Stiffness

The tire mechanics characteristics are essential for analysis, simulation and control of vehicle dynamics. This paper develops the UniTire model for tire forces and moments under combined slip conditions with anisotropic tire slip stiffness. The anisotropy of tire slip stiffness, which means the difference of tire longitudinal slip stiffness and cornering stiffness, will cause that the direction of tire resultant shear stress in adhesion region is different from that in sliding region. Eventually the tire forces and moments under combined slip conditions will be influenced obviously. The author has proposed a “direction factor” before to modify the direction of resultant force in the tire-road contact patch, which can describe tire forces at cornering/braking combination accurately. However, the aligning moments which are very complicated under combined slip conditions are not considered in previous analysis.