Refine Your Search

Search Results

Viewing 1 to 10 of 10
Technical Paper

Cooling Performance Investigation of a Rear Mounted Cooling Package for Heavy Vehicles

2011-04-12
2011-01-0174
The aim of the study was to investigate the cooling performance of two cooling package positions for distribution vehicles by using Computational Fluid Dynamics. The first cooling package was positioned in the front of the vehicle, behind the grill and the second position was at the rear of the vehicle. Each case was evaluated by its cooling performance for a critical driving situation and its aerodynamic drag at 90 km/h, where the largest challenge of an alternative position is the cooling air availability. The geometry used was a semi-generic commercial vehicle, based on a medium size distribution truck with a heat rejection value set to a fixed typical level at maximum power for a 13 litre Euro 6 diesel engine. The heat exchangers included in the study were the air conditioning condenser, the charge air cooler and the radiator. It was found that the main problem with the rear mounted cooling installation was the combination of the fan and the geometry after the fan.
Technical Paper

Cooling Airflow System Modeling in CFD Using Assumption of Stationary Flow

2011-09-13
2011-01-2182
Today CFD is an important tool for engineers in the automotive industry who model and simulate fluid flow. For the complex field of Underhood Thermal Management, CFD has become a very important tool to engineer the cooling airflow process in the engine bay of vehicles. To model the cooling airflow process accurately in CFD, it is of utmost importance to model all components in the cooling airflow path accurately. These components are the heat exchangers, fan and engine bay blockage effect. This paper presents CFD simulations together with correlating measurements of a cooling airflow system placed in a test rig. The system contains a heavy duty truck louvered fin radiator core, fan shroud, fan ring and fan. Behind the cooling module and fan, a 1D engine silhouette is placed to mimic the blockage done by a truck engine. Furthermore, a simple hood is mounted over the module to mimic the guiding of air done by the hood shape in an engine bay.
Technical Paper

Continuing Cooling Performance Investigation of a Rear Mounted Cooling Package for Heavy Vehicles

2011-09-13
2011-01-2285
This investigation is a continuing analysis of the cooling performance and aerodynamic properties of a rear-mounted cooling module on a semi-generic commercial vehicle, which was carried out by Larsson, Löfdahl and Wiklund. In the previous study two designs of the cooling package installation were positioned behind the rear wheelhouse and the results were compared to a front-mounted cooling module. The investigation was mainly focused on a critical cooling situation occurring at lower vehicle speeds for a local distribution vehicle. The conclusion from the study was that the cooling performance for one of the rear-mounted installation was favorable compared to the front-mounted cooling package. This was mainly due to the low vehicle speed, the high fan speed and to fewer obstacles around the cooling module resulting in a lower system restriction within the installation.
Journal Article

Experimental Investigation of Heat Transfer Rate and Pressure Drop through Angled Compact Heat Exchangers Relative to the Incoming Airflow

2014-09-30
2014-01-2337
This paper presents pressure drops and heat transfer rates for compact heat exchangers, where the heat exchangers are angled 90°, 60°, 30° and 10° relative to the incoming airflow. The investigation is based on three heat exchangers with thicknesses of 19mm and 52mm. Each heat exchanger was mounted in a duct, where it was tested for thermal and isothermal conditions. The inlet temperature of the coolant was defined to two temperatures; ambient temperature and 90°C. For the ambient cases the coolant had the same temperature as the surrounding air, these tests were performed for five airflow rates. When the coolant had a temperature of 90°C a combination of five coolant flow rates and five airflow rates were tested. The test set-up was defined as having a constant cross-section area for 90°, 60° and 30° angles, resulting in a larger core area and a lower airspeed through the core, for a more inclined heat exchanger.
Journal Article

Comparative Studies between CFD and Wind Tunnel Measurements of Cooling Performance and External Aerodynamics for a Heavy Truck

2014-09-30
2014-01-2443
Nowadays, much focus for vehicle manufacturers is directed towards improving the energy efficiency of their products. The aerodynamic drag constitutes one major part of the total driving resistance for a vehicle travelling at higher speeds. In fact, above approximately 80km/h the aerodynamic drag is the dominating resistance acting on a truck. Hence the importance of reducing this resistance is apparent. Cooling drag is one part of the total aerodynamic drag, which arises from air flowing through the heat exchangers, and the irregular under-hood area. When using Computational Fluid Dynamics (CFD) in the development process it is of great importance to ensure that the methods used are accurately capturing the physics of the flow. This paper deals with comparative studies between CFD and wind-tunnel tests. In this paper, two comparative studies are presented.
Technical Paper

A 1D Method for Transient Simulations of Cooling Systems with Non-Uniform Temperature and Flow Boundaries Extracted from a 3D CFD Solution

2015-04-14
2015-01-0337
The current work investigates a method in 1D modeling of cooling systems including discretized cooling package with non-uniform boundary conditions. In a stacked cooling package the heat transfer through each heat exchanger depends on the mass flows and temperature fields. These are a result of complex three-dimensional phenomena, which take place in the under-hood and are highly non-uniform. A typical approach in 1D simulations is to assume these to be uniform, which reduces the authenticity of the simulation and calls for additional calibrations, normally done with input from test measurements. The presented work employs 3D CFD simulations of complete vehicle in STAR-CCM+ to perform a comprehensive study of mass-flow and thermal distribution over the inlet of the cooling package of a Volvo FM commercial vehicle in several steady-state operating points.
Technical Paper

Development of a Model Scale Heat Exchanger for Wind Tunnel Models of Road Vehicles

2008-04-14
2008-01-0097
During the development of the aerodynamic properties of fore coming road vehicles down scaled models are often used in the initial phase. However, if scale models are to be utilised even further in the aerodynamic development they have to include geometrical representatives of most of the components found in the real vehicle. As the cooling package is one of the biggest single generators of aerodynamic drag the heat exchangers are essential to include in a wind tunnel model. However, due mainly to limitations in manufacturing techniques it is complicated to make a down scaled heat exchanger and instead functional dummy heat exchangers have to be developed for scaled wind tunnel models. In this work a Computational Fluid Dynamics (CFD) code has been used to show that it is important that the simplified heat exchanger model has to be of comparable size to that of the full scale unit.
Technical Paper

Numerical Investigation of Natural Convection in a Simplified Engine Bay

2016-04-05
2016-01-1683
Presented are results from numerical investigations of buoyancy driven flow in a simplified representation of an engine bay. A main motivation for this study is the necessity for a valid correlation of results from numerical methods and procedures with physical measurements in order to evaluate the accuracy and feasibility of the available numerical tools for prediction of natural convection. This analysis is based on previously performed PIV and temperature measurements in a controlled physical setup, which reproduced thermal soak conditions in the engine compartment as they occur for a vehicle parked in a quiescent ambient after sustaining high thermal loads. Thermal soak is an important phenomenon in the engine bay primarily driven by natural convection and radiation after there had been a high power demand on the engine. With the cooling fan turned off and in quiescent environment, buoyancy driven convection and radiation are the dominating modes of heat transfer.
Journal Article

CFD Simulations of one Period of a Louvered Fin where the Airflow is Inclined Relative to the Heat Exchanger

2015-04-14
2015-01-1656
This article presents Computational Fluid Dynamics (CFD) simulations fo one period of a louvered fin, for a crossflow compact finned heat exchanger, where the incoming airflow was inclined relative to its core. Four inclinations were investigated: 90°, which was when the air flowed perpendicular to the heat exchanger, 60°, 30° and 10° angles relative to the vertical plane. The study included three heat exchanger designs, where two of them had symmetrical louvered fins and a thickness of 19mm and 52mm. The third had a thickness of 19mm and had the louvers angled in one direction. All heat exchangers have been simulated when the airflow entered both from above and below relative to the horizontal plane. Simulations have also been carried out when the airflow entered from the side, illustrating the heat exchanger to be angled relative to the vertical axis. Two air speeds have been investigated for each configuration, where the results were compared to experimental data.
Journal Article

Force Based Measurement Method for Cooling Flow Quantification

2017-03-28
2017-01-1520
Quantification of heat exchanger performance in its operative environment is in many engineering applications an essential task, and the air flow rate through the heat exchanger core is an important optimizing parameter. This paper explores an alternative method for quantifying the air flow rate through compact heat exchangers positioned in the underhood of a passenger car. Unlike conventional methods, typically relying on measurements of direct flow characteristics at discrete probe locations, the proposed method is based on the use of load-cells for direct measurement of the total force acting on the heat exchanger. The air flow rate is then calculated from the force measurement. A direct comparison with a conventional pressure based method is presented as both methods are applied on a passenger car’s radiator tested in a full scale wind tunnel using six different grill configurations. The measured air flow rates are presented and discussed over a wide range of test velocities.
X