Refine Your Search

Search Results

Viewing 1 to 7 of 7
Technical Paper

Theoretical and Practical Mechanisms on Lowering Exhaust Emission Levels for Diverse Types of Spark Ignition Engines

2008-06-23
2008-01-1545
The exhaust aftertreatment strategy is one of the most fundamental aspects of spark ignition engine technologies. For various types of engines (e.g., carburetor engine, PFI engine and GDI engine), measuring, purifying, modeling, and control strategies regarding the exhaust aftertreatment systems vary significantly. The primary goal of exhaust aftetreatment systems is to reduce the exhaust emission levels of NOx, HC and CO as well as to lower combustion soot. In general, there is a tradeoff among different engine performance aspects. The exhaust catalytic systems, such as the three way catalyst (TWC) and lean NOx trap (LNT) converters, can be applied together with the development of other engine technologies (e.g., variable valve timing, cold start). With respect to engine soot, some advanced diagnosing techniques are essential to obtain thorough investigation of exhaust emission mechanisms.
Technical Paper

Simulation of Intake Manifold Water Injection in a Heavy Duty Natural Gas Engine for Performance and Emissions Enhancement

2018-09-10
2018-01-1653
The present work discusses the effects of intake manifold water injection in a six-cylinder heavy duty natural gas (NG) engine through one-dimensional simulation. The numerical study was carried out based on GT-Power under different engine working conditions. The established simulation model was firstly calibrated in detail through the whole engine speed sweep under full load conditions before the model of intake manifold water injector was involved, and the calibration was based on experimental data. The intake manifold water injection mass was controlled through adjustment of intake water/gas (water/natural gas) ratio, a water/gas ratio swept from 0 to 4 was selected to investigate the effects of intake manifold water injection on engine performance and emissions characteristics. On the other hand, the enhancement potential of intake manifold water injection in heavy duty NG engine under lean and stoichiometric condition was also investigated by the alteration of air-fuel ratio.
Technical Paper

A Study on the Combustion Characteristics of a Methane Jet Flame in a Pressurized Hot Vitiated Co-flow

2019-01-15
2019-01-0082
This work presents the study of the methane jet flame in a pressurized vitiated co-flow burner (PVCB). The lift-off length and the stabilization of the methane jet flame under different environment pressures, co-flow temperatures, co-flow rates and jet velocities have been studied, and a chemical numerical simulation based on Gri-mech 3.0 was analyzed as well. The results could provide theoretical supports for the research of natural gas engine combustion stabilization control to increase its thermal efficiency. The experimental results show that the lift-off length decreases obviously (104.22mm to76.14mm) with the increase of the environment pressure (1to1.5bar, 1073K) and temperature (119.34mm to 43.74mm from 1058K to 1118K, 1bar), meanwhile, it also increases with the increment of the co-flow rate and jet velocity.
Technical Paper

Numerical Study on Flammability Limit and Performance of Compression-Ignition Argon Power Cycle Engine with Fuel of Hydrogen

2021-04-06
2021-01-0391
The argon power cycle engine, which uses hydrogen as fuel, oxygen as oxidant, and argon other than nitrogen as the working fluid, is considered as a novel concept of zero-emission and high-efficiency system. Due to the extremely high in-cylinder temperature caused by the lower specific heat capacity of argon, the compression ratio of spark-ignition argon power cycle engine is limited by preignition or super-knock. Compression-ignition with direct-injection is one of the potential methods to overcome this challenge. Therefore, a detailed flammability limit of H2 under Ar-O2 atmosphere is essential for better understanding of stable autoignition in compression-ignition argon power cycle engines.
Technical Paper

Numerical Simulation of Surface Temperature Fluctuation and Thermal Barrier Coating at the Piston Top for a Diesel Engine Performance Improvement

2021-04-06
2021-01-0229
Low heat rejection (LHR) combustion has been recognized as a potential technology for further fuel economy improvement. This paper aims to simulate how the piston top’s thermal barrier coating affects the engine’s thermal efficiency and emissions. Accordingly, a Thin-wall heat transfer model in AVL Fire software was employed. The effects of increasing the piston top surface temperature, comparing different thermal barrier coating material, were simulated at the engine’s rated power operating point, so as the piston top’s surface roughness. In comparison to a standard diesel engine, the indicated thermal efficiency (ITE) could increase by 0.4% when the surface temperature of the piston top changed from 575K to 775K.
Technical Paper

Numerical Study of Intake Manifold Water Injection on Characteristics of Combustion and Emissions in a Heavy-Duty Natural Gas Engine

2019-04-02
2019-01-0562
The performances of heavy-duty natural gas engines have been limited by combustion temperature and NOx emissions for a long time. Recently, water injection technology has been widely considered as a technical solution in reducing fuel consumption and emissions simultaneously in both gasoline and diesel engines. This paper focuses on the impacts of intake manifold water injection on characteristics of combustion and emissions in a natural gas heavy-duty engine through numerical methods. A computational model was setup and validated with experimental data of pressure traces in a CFD software coupled with detailed chemical kinetics. The simulation was mainly carried out in low-speed and full-load conditions, and knock level was also measured and calculated by maximum amplitude of pressure oscillations (MAPO).
Technical Paper

Simulation of charged species flow and ion current detection for knock sensing in gasoline engines with active pre-chamber

2023-09-29
2023-32-0005
Recently, it has been wildly recognized that active pre- chamber has a significant effect on extending the lean burn limit of gasoline engines. Ion current signals in the combustion is also considered as a promising approach to the engine knock detection. In this study, the feasibility of employing ion current in an active pre- chamber for combustion diagnosis was analyzed by three-dimensional numerical simulation on a single- cylinder engine equipped with active pre-chamber. The flow characteristics of charged species (NO+, H3O+ and electrons) in the main chamber and pre-chamber under knock conditions are investigated at different engine speeds, intake pressures and ignition timings. The results show that the ion current can theoretically be used for the knock detection of the active pre- chamber. The peak value of the electron or H3O+ mass fraction caused by knocking backflow can be used as knock indication peak.
X