Refine Your Search

Topic

Search Results

Journal Article

Integrating Electromechanical Systems in Commercial Vehicles for Improved Handling, Stability, and Comfort

2014-09-30
2014-01-2408
The 2014 SAE Buckendale Lecture will address the past developments and challenges of electromechanical “smart” systems for improving commercial vehicles' functionality. Electromechanical systems combine traditional mechanical devices with electrical components to provide far higher degree of functionality and adaptability for improved vehicle performance. The significant advances in microprocessors and their widespread use in consumer products have promoted their implementation in various classes of vehicles, resulting in “smart” devices that can sense their operating environment and command an appropriate action for improved handling, stability, and comfort. The chassis and suspension application of electromechanical devices mostly relate to controllable suspensions and vehicle dynamic management systems, such as Electronic Stability Control.
Technical Paper

Simulation Evaluation on the Rollover Propensity of Multi-Trailer Trucks at Roundabouts

2020-03-27
2020-01-5005
The main intent of this study is to provide a simulation analysis of rollover dynamics of multi-trailer commercial vehicles in roundabouts. The results are compared with conventional tractor-semitrailer with a single 53-ft trailer for roundabouts that are of typical configuration to those in the U.S. cities. The multi-trailer commercial vehicles that are considered in this study are the A-double trucks commonly operated in the U.S. roads with the trailer length of 28 ft, 33 ft, and 40 ft. The multi-body dynamic models for analyzing the rollover characteristics of the trucks in roundabouts are established in TruckSim®. The models are intended to be used to assess the maximum rollover indexes of each trailer combination subjected to various circulating speeds for two types of roundabouts, 140-ft single-lane and 180-ft double-lane.
Journal Article

Optimal Direct Yaw Controller Design for Vehicle Systems with Human Driver

2011-09-13
2011-01-2149
Dynamic game theory brings together different features that are keys to many situations in control design: optimization behavior, the presence of multiple agents/players, enduring consequences of decisions and robustness with respect to variability in the environment, etc. In the presented methodology, vehicle stability is represented by a cooperative dynamic/difference game such that its two agents (players), namely, the driver and the direct yaw controller (DYC), are working together to provide more stability to the vehicle system. While the driver provides the steering wheel control, the DYC control algorithm is obtained by the Nash game theory to ensure optimal performance as well as robustness to disturbances. The common two-degree of freedom (DOF) vehicle handling performance model is put into discrete form to develop the game equations of motion.
Journal Article

Vehicle System Simulator: Development and Validation

2011-09-13
2011-01-2166
A graphical user interface (GUI) toolbox called Vehicle System Simulator (VSS) is developed in MATLAB to ease the use of this vehicle model and hopefully encourage its widespread application in the future. This toolbox uses the inherent MATLAB discrete-time solvers and is mainly based on Level-2 s-function design. This paper describes its built-in vehicle dynamics model based on multibody dynamics approach and nonlinear tire models, and traction/braking control systems including Cruise Control and Differential Braking systems. The built-in dynamics model is validated against CarSim 8 and the simulation results prove its accuracy. This paper illustrates the application of this new MATLAB toolbox called Vehicle System Simulator and discusses its development process, limitations, and future improvements.
Journal Article

Linear Quadratic Game Theory Approach to Optimal Preview Control of Vehicle Lateral Motion

2011-04-12
2011-01-0963
Vehicle stability is maintained by proper interactions between the driver and vehicle stability control system. While driver describes the desired target path by commanding steering angle and acceleration/deceleration rates, vehicle stability controller tends to stabilize higher dynamics of the vehicle by correcting longitudinal, lateral, and roll accelerations. In this paper, a finite-horizon optimal solution to vehicle stability control is introduced in the presence of driver's dynamical decision making structure. The proposed concept is inspired by Nash strategy for exactly known systems with more than two players, in which driver, commanding steering wheel angle, and vehicle stability controller, applying compensated yaw moment through differential braking strategy, are defined as the dynamic players of the 2-player differential linear quadratic game.
Technical Paper

The Virginia Tech Center for Transportation Research “Smart Truck” - An Instrumented Heavy Vehicle for Evaluation of Intelligent Transportaltion Systems

1997-11-17
973186
The objective of this paper is to describe a Class 8 heavy truck that the Virginia Tech Center for Transportation Research has modified and instrumented for use in evaluating Intelligent Transportation Systems (ITS) technologies. The truck is capable of recording a variety of data, both electronic and video, in real-time from a suite of sensors and cameras that have been inconspicuously mounted on the tractor. The tractor, trailer, and instrumentation package enable Virginia Tech to conduct commercial vehicle ITS research related to safety and human factors, and advanced vehicle control systems (AVCS). This paper will describe the instrumentation package, and address both general and specific types of research that can be performed using this truck.
Technical Paper

Efficient Empirical Modeling of a High-Performance Shock Absorber for Vehicle Dynamics Studies

2007-04-16
2007-01-0858
Race teams frequently use tools like shock dynamometers (dynos) to characterize the complex behavior of shock absorbers after they are built and before they are put on the race car for testing to make sure they perform as expected. One way to make use of this shock dyno data is to use it to create a model to predict shock absorber performance over a wide range of inputs. These shock models can then be integrated into vehicle simulations to predict how the vehicle will respond to different shock selections, and aid the race engineer to narrow down possible shock setups before track testing. This paper develops an intuitive nonlinear dynamic shock absorber model that can be quickly fit to experimental data and implemented in simulation studies. Unlike other existing dynamic race shock models, it does not suffer from the complexity of modeling complex physical behavior, or the inefficiencies of unstructured black-box modeling.
Technical Paper

A Methodology for Laboratory Testing of Truck Cab Suspensions

2009-10-06
2009-01-2862
This work pertains to laboratory testing of truck cab suspensions for the purpose of improving in-cab ride quality. It describes the testing procedure of a complete truck cab suspension while still being mounted on the vehicle. It allows for testing with minimal amount of resources, limited to two mobile actuators and minimal modifications to the stock vehicle. The actuators can be attached to any axle through a set of modified brake drums and excite the drive axle in a vertical plane. The excitation signal sent to the actuators can be in phase for a heave type motion or out of phase for a roll motion. The chassis shock absorbers are replaced with rigid links to prevent the actuator input from becoming filtered by the primary suspension. This allows the input to reach the cab suspension more directly and the cab to be excited across a broader range of frequencies.
Technical Paper

A Methodology for Accounting for Uneven Ride Height in Soft Suspensions with Large Lateral Separation

2009-10-06
2009-01-2920
This study pertains to motion control algorithms using statistical calculations based on relative displacement measurements, in particular where the rattle space is strictly limited by fixed end-stops and a load leveling system that allows for roll to go undetected by the sensors. One such application is the cab suspension of semi trucks that use widely-spaced springs and dampers and a load leveling system that is placed between the suspensions, near the center line of the cab. In such systems it is possible for the suspension on the two sides of the vehicle to settle at different ride heights due to uneven loading or the crown of the road. This paper will compare the use of two moving average signals (one positive and one negative) to the use of one root mean square (RMS) signal, all calculated based on the relative displacement measurement.
Technical Paper

Yaw Stability Control and Emergency Roll Control for Vehicle Rollover Mitigation

2010-10-05
2010-01-1901
In this paper a yaw stability control algorithm along with an emergency roll control strategy have been developed. The yaw stability controller and emergency roll controller were both developed using linear two degree-of-freedom vehicle models. The yaw stability controller is based on Lyapunov stability criteria and uses vehicle lateral acceleration and yaw rate measurements to calculate the corrective yaw moment required to stabilize the vehicle yaw motion. The corrective yaw moment is then applied by means of a differential braking strategy in which one wheel is selected to be braked with appropriate brake torque applied. The emergency roll control strategy is based on a rollover coefficient related to vehicle static stability factor. The emergency roll control strategy utilizes vehicle lateral acceleration measurements to calculate the roll coefficient. If the roll coefficient exceeds some predetermined threshold value the emergency roll control strategy will deploy.
Technical Paper

A Comparison of a Semi-Active Inerter and a Semi-Active Suspension

2010-10-05
2010-01-1903
Inerters have become a hot topic in recent years, especially in vehicle, train, and building suspension systems. The performance of a passive inerter and a semi-active inerter was analyzed and compared with each other and it showed that the semi-active inerter has much better performance than the passive inerter, especially with the Hybrid control method. Eight different layouts of suspensions were analyzed with a quarter car model in this paper. The adaptation of dimensionless parameters was considered for a semi-active suspension and the semi-active inerters. The performance of the semi-active inerter suspensions with different layouts was compared with a semi-active suspension with a conventional parallel spring-damper arrangement. It shows a semi-active suspension, with more simple configuration and lower cost, has similar or better compromise between ride and handling than a semi-active inerter with the Hybrid control.
Technical Paper

Application of Time-Domain Identification Techniques for Evaluating Heavy Truck Dynamics

2003-11-10
2003-01-3413
The primary purpose of this paper is to evaluate how various time-domain system identification techniques, which have been successfully used for different dynamic systems, can be applied for identifying heavy truck dynamics. System identification is the process by which a model is constructed from prior knowledge of a system and a series of experimental data. The parameters obtained from the identification process can be used for developing or improving the mathematical representation of a physical system. In contrast to lighter vehicles, heavy trucks have considerably more flexible frames. The frame can exhibit beaming dynamics in a frequency range that is within the range of interest for evaluating the ride and handling aspects of the truck. Understanding the dynamic contributions of the truck frame is essential for improving the ride characteristics of a vehicle. This understanding is also needed for designing new frame configurations for the existing or new production trucks.
Technical Paper

On-Vehicle Evaluation of Heavy Truck Suspension Kinematics

2003-11-10
2003-01-3394
This paper presents the setup and test results for evaluating kinematics characteristics of heavy truck suspensions in their actual environment, while installed on the truck. The paper will provide the truck suspension kinematics that are important to the truck dynamics, namely vertical stiffness, roll stiffness, and roll steer. It also presents the nature of the hysteresis that commonly exists in heavy truck suspensions. Next, we present a detailed account of the issues that must be taken into consideration in practice, when measuring various kinematics aspects of a truck suspension. Using a successful laboratory setup for measuring kinematics of heavy truck suspensions, the paper provides an evaluation of a class 8 truck with a trailing arm suspension. The description of the setup provides the details of the instrumentation and means of actuation that are necessary for collecting good kinematics data.
Technical Paper

Laboratory Evaluation of Heavy Truck Dynamics: Are the Test Results Useful?

2003-11-10
2003-01-3395
This paper provides an insight into some of the benefits of evaluating heavy truck dynamics in the laboratory. Recognizing that the vast majority of ride and engineering tests that are commonly conducted on heavy trucks occur in the field or on test tracks, the paper shows that there is much to be gained from dynamic testing of a truck in the laboratory under proper conditions. Of course, the main reasons for considering laboratory testing are that the tests can be conducted a) at much lower costs than field testing, and b) in a much more repeatable manner. The argument against laboratory tests has always been that they may not represent the true dynamic environment that a truck would experience in revenue service. Some of the issues related to properly setting up a truck in the laboratory such that the experiments can relatively accurately emulate what occurs in the field are presented.
Technical Paper

Study of Semiactive Adaptive Control Algorithms with Magneto-Rheological Seat Suspension

2004-03-08
2004-01-1648
This paper presents a parametric study of two semiactive adaptive control algorithms through simulation: the non-model based skyhook control, and the newly developed model-based nonlinear adaptive vibration control. This study includes discussion of suspension model setup, dynamic analysis approach, and controller tuning. The simulation setup is from a heavy-duty truck seat suspension with a magneto-rheological (MR) damper. The dynamic analysis is performed in the time domain using sine sweep excitations without the need to linearize such a nonlinear semiactive system that is studied here. Through simulation, the effectiveness of both control algorithms is demonstrated for vibration isolation. The computation flops of the simulation in the SIMULINK environment are compared, and the adaptability is studied with respect to plant variations and different excitation profiles, both of which come across typically for vehicle suspension systems.
Technical Paper

Can Semiactive Dampers with Skyhook Control Improve Roll Stability of Passenger Vehicles?

2004-05-04
2004-01-2099
Skyhook control has been used extensively for semiactive dampers for a variety of applications, most widely for passenger vehicle suspensions. This paper provides an experimental evaluation of how well skyhook control works for improving roll stability of a passenger vehicle. After discussing the formulation for various semiactive control methods that have been suggested in the past for vehicle suspensions, the paper includes the implementation of a semiactive system with magneto-rheological (MR) dampers on a sport utility vehicle. The vehicle is used for a series of road tests that includes lane change maneuvers, with different types of suspensions. The suspensions that are tested include the stock suspension, the uncontrolled MR dampers, skyhook control, and a new semiactive control method called “SIA skyhook.” The SIA Skyhook augments the conventional skyhook control with steering input, in order to account for the suspension requirements during a lateral maneuver.
Technical Paper

A Comparative Analysis of Air-inflated and Foam Seat Cushions for Truck Seats

2002-11-18
2002-01-3108
A comprehensive comparison between an air-inflated seat cushion designed for truck seats and a commonly used foam cushion is provided, using a single-axis test rig designed for seat dynamic testing. Different types of tests were conducted in order to evaluate various aspects of each type of cushion; in terms of their response to narrowband (single frequency) dynamics, broadband input of the type that is commonly used in the trucking industry for testing seats, and a step input for assessing the damping characteristics of each cushion. The tests were conducted over a twelve-hour period—in four-hour intervals—measuring the changes that occur at the seat cushion over time and assessing how these changes can affect the metrics that are used for evaluating the cushions. The tests indicated a greater stiffening of the foam cushion over time, as compared with the air-inflated cushion that showed almost no change in stiffness when exposed to a static weight for twelve hours.
Technical Paper

Alternative Test Methods for Long Term Dynamic Effects of Vehicle Seats

2002-11-18
2002-01-3082
Two alternative methods are presented for studying the comfort, and possibly fatigue, effects of vehicle seats, in particular truck seats that include a seat suspension. The methods, named “aPcrms” and “SPD%” for the purpose of this study, are based on analyzing the pressure profile at the seat cushion/human body interface in a manner that accounts for the contact area, pressure distribution, and change in contact pressure. The alternative methods are compared with methods suggested in the past for vehicle seats, using a laboratory test rig and a truck seat with a conventional foam cushion and an air-inflated seat cushion. The results show that the proposed methods better highlight the human comfort differences between the two cushion types, and provide objective measures that better correlate with subjective measures from a separate field study on the same types of seats.
Technical Paper

A Simulation-Based Study on the Improvement of Semi-Truck Roll Stability in Roundabouts

2016-09-27
2016-01-8038
This paper studies the effect of different longitudinal load conditions, roundabout cross-sectional geometry, and different semi-truck pneumatic suspension systems on roll stability in roundabouts, which have become more and more popular in urban settings. Roundabouts are commonly designed in their size and form to accommodate articulated heavy vehicles (AHVs) by evaluating such affects as off-tracking. However, the effect of the roadway geometry in roundabouts on the roll dynamics of semi-tractors and trailers are equally important, along with their entry and exit configuration. , Because the effect of the roundabout on the dynamics of trucks is further removed from the immediate issues considered by roadway planner, at times they are not given as much consideration as other roadway design factors.
Technical Paper

Robust Optimal Control of Vehicle Lateral Motion with Driver-in-the-Loop

2012-09-24
2012-01-1903
Dynamic “Game Theory” brings together different features that are keys to many situations in control design: optimization behavior, the presence of multiple agents/players, enduring consequences of decisions and robustness with respect to variability in the environment, etc. In previous studies, it was shown that vehicle stability can be represented by a cooperative dynamic/difference game such that its two agents (players), namely, the driver and the vehicle stability controller (VSC), are working together to provide more stability to the vehicle system. While the driver provides the steering wheel control, the VSC command is obtained by the Nash game theory to ensure optimal performance as well as robustness to disturbances. The common two-degree of freedom (DOF) vehicle handling performance model is put into discrete form to develop the game equations of motion. This study focus on the uncertainty in the inputs, and more specifically, the driver's steering input.
X