Refine Your Search

Search Results

Viewing 1 to 13 of 13
Technical Paper

Experimental Determination of the Instantaneous Frictional Torque in Multicylinder Engines

1996-10-01
962006
An experimental method for determining the Instantaneous Frictional Torque (IFT) using pressure transducers on every cylinder and speed measurements at both ends of the crankshaft is presented. The speed variation measured at one end of the crankshaft is distorted by torsional vibrations making it difficult to establish a simple and direct correlation between the acting torque and measured speed. Using a lumped mass model of the crankshaft and modal analysis techniques, the contributions of the different natural modes to the motion along the crankshaft axis are determined. Based on this model a method was devised to combine speed measurements made at both ends of the crankshaft in such a way as to eliminate the influence of torsional vibrations and obtain the equivalent rigid body motion of the crankshaft. This motion, the loading torque and the gas pressure torque are utilized to determine the IFT.
Technical Paper

A Diagnostic Technique for the identification of Misfiring Cylinder(s)

1987-02-01
870546
This paper introduces a diagnostic technique for the detection of misfiring cylinders in internal combustion engines. The technique requires the analysis of the instantaneous angular velocity of an engine flywheel. The results show that the mean cyclic acceleration, maximum variation in angular velocity, and the cyclic period of acceleration can be used as a measure for the mean net torque and the mean net expansion pressure torque produced by each cylinder. The proposed technique has proven to be effective in identifying a faulty cylinder using efficient and simple computations.
Technical Paper

A Modified Cetane Scale for Low Ignition Quality Fuels

1978-02-01
780640
A detailed analysis has been made on the Cetane Scale presently used to rate the autoignition quality of fuels. The effect of the increase in temperature and pressure, as a result of increasing the compression ratio, on the ignition delay has been theoretically and experimentally analyzed. It has been found that the ignition delay is more sensitive to air temperature than air pressure. The sensitivity increases with the drop in the cetane number of the fuel. Many techniques have been examined to modify the present cetane scale. A modified scale has been developed by raising the inlet temperature from 150°F to 350°F without changing the rest of the rating technique. The modified scale is very effective in extending the scale to zero cetane number and is able to rate the low ignition quality fuels.
Technical Paper

Compression Ratio Optimization in a Direct-Injection Diesel Engine: A Mathematical Model

1988-02-01
880427
This paper describes the development and results of a mathematical model for a single cylinder, naturally-aspirated, direct-injection diesel engine, used to study the effect of compression ratio on the different performance parameters. The parameters investigated include; thermal and mechanical efficiency, ignition delay, mean effective pressure, maximum cylinder pressure, mechanical friction, and blowby. The model simulates a full thermodynamic cycle and considers the intake and exhaust processes, instantaneous heat transfer, instantaneous friction, and instantaneous blowby. Based on the model results, a prediction of an optimum CR for the engine is made.
Technical Paper

Starting of Diesel Engines: Uncontrolled Fuel Injection Problems

1986-02-01
860253
Many problems can develop from the uncontrolled fuel injection during cranking and starting of diesel engines. Some of the problems are related to excessive wear as a result of the high peak pressures reached upon combustion after misfiring, the relatively low rotating speeds and the lack of formation of a lubricating oil film between the interacting surfaces. Another problem is the emission of high amounts of unburned hydrocarbons and white smoke. Experimental results are given for a single cylinder and a multicylinder diesel engine, for the instantaneous angular velocity and cylinder pressures from the starter-on point until the engine fires. The causes of misfiring during cranking are investigated. The role of the increased blow-by gases on the autoignition process at the low cranking speeds is analyzed both analytically and experimentally. The contribution of the instantaneous angular velocity at the time of injection, on the autoignition process is investigated.
Technical Paper

Ignition Delay Correlations for Neat Ethanol and Ethanol-DF2 Blends in a D.I. Diesel Engine

1984-10-01
841343
A study was conducted on a direct-injection, single-cylinder, research-type diesel engine to determine the effect of adding ethanol to diesel fuel on the ignition delay period. The tests covered the whole range of ethanol-DF2 blends: from 100% ethanol to 100% DF2. The test parameters were: the ethanol content, the intake-air properties, and the equivalence ratio. The ignition delay was measured by detecting the beginning of injection and the occurrence of a detectable pressure rise. The present results show that, for ethanol-DF2 blends, the pressure-rise delay decreases by increasing both the intake-air pressure and the intake-air temperature, and increases by increasing the ethanol content in the blend. Ignition delay correlations were developed in terms of air temperature, air pressure, and ethanol volumetric fraction. The global activation energy was determined and correlated with the cetane number for each blend.
Technical Paper

A Technique for the Diagnosis of Malfunctions in Diesel Injection Systems

1978-02-01
780033
Many diagnostic parameters have been studied for the detection of malfunctions in two types of diesel injection systems: the unit injector and the distributor pump system. It has been found that the peak fuel pressure in the unit injector pressure chamber (measured by a strain gage mounted on the injector rocker arm), and the peak fuel pressure in the line near the injector on the distributor injection system are very useful parameters for fault diagnosis. Figures and charts relating the fuel peak pressure and engine speed have been developed to identify a healthy as well as a faulty injection system.
Technical Paper

Direct Visualization of High Pressure Diesel Spray and Engine Combustion

1999-10-25
1999-01-3496
An experimental study was carried out to visualize the spray and combustion inside an AVL single-cylinder research diesel engine converted for optical access. The injection system was a hydraulically-amplified electronically-controlled unit injector capable of high injection pressure up to 180 MPa and injection rate shaping. The injection characteristics were carefully characterized with injection rate meter and with spray visualization in high-pressure chamber. The intake air was supplied by a compressor and heated with a 40kW electrical heater to simulate turbocharged intake condition. In addition to injection and cylinder pressure measurements, the experiment used 16-mm high-speed movie photography to directly visualize the global structures of the sprays and ignition process. The results showed that optically accessible engines provide very useful information for studying the diesel combustion conditions, which also provided a very critical test for diesel combustion models.
Technical Paper

An Analysis of Regulated and Unregulated Emissions in an HSDI Diesel Engine under the LTC Regime

2007-04-16
2007-01-0905
Several mechanisms are discussed to understand the formation of both regulated and unregulated emissions in a high speed, direct injection, single cylinder diesel engine using low sulphur diesel fuel. Experiments were conducted over a wide range of injection pressures, EGR rates, injection timings and swirl ratios. The regulated emissions were measured by the standard emission equipment. Unregulated emissions such as aldehydes and ketones were measured by high pressure liquid chromatography and hydrocarbon speciation by gas chromatography. Particulate mass was measured with a Tapered Element Oscillating Microbalance (TEOM). Analysis was made of the sources of different emission species and their relationship with the combustion process under the different operating conditions. Special attention is given to the low temperature combustion (LTC) regime which is known to reduce both NOx and soot. However the HC, CO and unregulated emissions increased at a higher rate.
Technical Paper

Emissions Trade-Off and Combustion Characteristics of a High-Speed Direct Injection Diesel Engine

2001-03-05
2001-01-0197
The emissions trade-off and combustion characteristics of a high speed, small-bore, direct injection, single cylinder, diesel engine are investigated at three different load conditions. The experiments covered a wide range of parameters including the injection pressure, exhaust gas recirculation (EGR) rate and swirl ratio (Sw). The effects of each parameter on the ignition delay (ID), apparent rate of energy release (ARER), NOx, Bosch smoke unit (BSU), CO and hydrocarbons are investigated. The results show that the NOx emission dropped continuously with the increase in EGR (up to 55%), but with increasing smoke emission in a classical trade-off relationship. The increase in injection pressure generally reduced smoke with NOx penalty; however, the NOx penalty decreased at higher EGR. There also appears to be an increase in the cool flame intensity at the high EGR rates. Applying swirl at high EGR rate and high injection pressure conditions further reduced smoke emissions.
Technical Paper

Investigation of Diesel Spray Primary Break-up and Development for Different Nozzle Geometries

2002-10-21
2002-01-2775
The nozzle configuration for an injector is known to have an important effect on the fuel atomization. A comprehensive experimental and numerical investigation has been performed to determine the influence of various internal geometries on the primary spray breakup and development using the electronically controlled high-pressure diesel injection systems. Different types of multi-hole minisac and VCO nozzles with cylindrical and tapered geometries, and different types of single-hole nozzles with defined grades of Hydro Grinding (HG) were investigated. The global characteristics of the spray, including spray angle, spray tip penetration and spray pattern were measured from the spray images with a high-speed drum camera. A long-distance microscope with a pulsed-laser as the optical shutter was used to magnify the diesel spray at the nozzle hole vicinity. A CFD analysis of the internal flow through various nozzle geometries has been carried out with a commercial code.
Technical Paper

Effect of Cetane Number with and without Additive on Cold Startability and White Smoke Emissions in a Diesel Engine

1999-05-03
1999-01-1476
I The effect of Cetane Number (CN) of the fuel and the addition of cetane improvers on the cold starting and white smoke emissions of a diesel engine was investigated. Tests were conducted on a single-cylinder, four-stroke-cycle, air-cooled, direct-injection, stand-alone diesel engine in a cold room at ambient temperatures ranging from 25 °C to - 5 °C. Five fuels were used. The base fuel has a CN of 49.2. The CN of the base fuel was lowered to 38.7 and 30.8 by adding different amounts of aromatic hydrocarbons. Iso-octyl nitrate is added to the high aromatic fuels in order to increase their CN to 48.6 and 38.9 respectively. Comparisons are made between the five fuels to determine the effect of CN and the additive on cylinder peak pressure, heat release rate, cold start-ability, combustion instability, hydrocarbon emissions and solid and liquid particulates.
Journal Article

Particulate Matter Characterization Studies in an HSDI Diesel Engine under Conventional and LTC Regime

2008-04-14
2008-01-1086
Several mechanisms are discussed to understand the particulate matter (PM) characterization in a high speed, direct injection, single cylinder diesel engine using low sulfur diesel fuel. This includes their formation, size distribution and number density. Experiments were conducted over a wide range of injection pressures, EGR rates, injection timings and swirl ratios, therefore covering both conventional and low temperature combustion regimes. A micro dilution tunnel was used to immediately dilute a small part of the exhaust gases by hot air. A Scanning Mobility Particle Sizer (SMPS) was used to measure the particulate size distribution and number density. Particulate mass was measured with a Tapered Element Oscillating Microbalance (TEOM). Analysis was made of the root cause of PM characterization and their relationship with the combustion process under different operating conditions.
X