Refine Your Search

Topic

Search Results

Viewing 1 to 19 of 19
Technical Paper

Development and Experimental Validation of a Control-Oriented Empirical Exhaust Gas Temperature Model

2020-09-27
2020-24-0008
Modern turbo-charged downsized engines reach high values of specific power, causing a significant increase of the exhaust gas temperature. Such parameter plays a key role in the overall powertrain environmental impact because it strongly affects both the catalyst efficiency and the turbine durability. In fact, common techniques to properly manage the turbine inlet gas temperature are based on mixture enrichment, which causes both a steep increase in specific fuel consumption and a decrease of catalyst efficiency. At the test bench, exhaust gas temperature is typically measured using thermocouples that are not available for on-board application, and such information is processed to calibrate open-loop look-up-tables. A real-time, reliable, and accurate exhaust temperature model would then represent a strategic tool for improving the performance of the engine control system.
Journal Article

Acoustic Emission Processing for Turbocharged GDI Engine Control Applications

2015-04-14
2015-01-1622
In the field of passenger car engines, recent research advances have proven the effectiveness of downsized, turbocharged and direct injection concepts, applied to gasoline combustion systems, to reduce the overall fuel consumption while respecting particularly stringent exhaust emissions limits. Knock and turbocharger control are two of the most critical factors that influence the achievement of maximum efficiency and satisfactory drivability, for this new generation of engines. The sound emitted from an engine encloses many information related to its operating condition. In particular, the turbocharger whistle and the knock clink are unmistakable sounds. This paper presents the development of real-time control functions, based on direct measurement of the engine acoustic emission, captured by an innovative and low cost acoustic sensor, implemented on a platform suitable for on-board application.
Journal Article

Individual Cylinder Air-Fuel Ratio Control for Engines with Unevenly Spaced Firing Order

2017-03-28
2017-01-0610
The most recent European regulations for two- and three-wheelers (Euro 5) are imposing an enhanced combustion control in motorcycle engines to respect tighter emission limits, and Air-Fuel Ratio (AFR) closed-loop control has become a key function of the engine management system also for this type of applications. In a multi-cylinder engine, typically only one oxygen sensor is installed on each bank, so that the mean AFR of two or more cylinders rather than the single cylinder one is actually controlled. The installation of one sensor per cylinder is normally avoided due to cost, layout and reliability issues. In the last years, several studies were presented to demonstrate the feasibility of an individual AFR controller based on a single sensor. These solutions are based on the mathematical modelling of the engine air path dynamics, or on the frequency analysis of the lambda probe signal.
Technical Paper

Development of a Control-Oriented Engine Model Including Wave Action Effects

2009-09-13
2009-24-0107
This paper describes the development of a control-oriented model that allows the simulation of the Internal Combustion Engine (ICE) thermodynamics, including pressure wave effects. One of the objectives of this work is to study the effects of a Variable Valve Timing (VVT) system on the behavior of a single-cylinder, four-stroke engine installed on a motor scooter. For a single cylinder engine running at relatively high engine speeds, the amount of air trapped into the cylinder strongly depends on intake pressure wave effects: it is essential, therefore, the development of a model that has the ability to resolve the wave-action phenomena, if successful simulation of the VVT system effects is to be performed.
Technical Paper

Implementation of Fuel Film Compensation Algorithm on the Lamborghini Diablo 6.0 Engine

2001-03-05
2001-01-0609
This paper presents the experimental work and the results obtained from the implementation of a transient fuel compensation algorithm for the 6.0-liter V12 high-performance engine that equips the Lamborghini Diablo vehicles. This activity has been carried out as part of an effort aimed at the optimization of the entire fuel injection control system. In the first part of the paper the tests for fuel film compensator identification are presented and discussed. In this phase the experimental work has been conducted in the test cell. An automatic calibration algorithm was developed to identify the well-known fuel film model X and τ parameters, so as to define their maps as a function of engine speed and intake manifold pressure. The influence of engine coolant temperature has been investigated separately; it will be soon presented together with the air dynamics compensation algorithm. In the second part of the paper, the performance of the fuel dynamics compensation algorithm is analyzed.
Technical Paper

Development of a Multi-Spark Ignition System for Reducing Fuel Consumption and Exhaust Emissions of a High Performance GDI Engine

2011-04-12
2011-01-1419
The paper presents the development and real-time implementation of a combustion control system based on optimal management of multiple spark discharge events, in order to increase combustion stability, reduce pollutant emissions and fuel consumption, and avoid partial or missing combustion cycles. The proposed approach has been developed as a cost-effective solution to several combustion-related issues that affect Gasoline Direct Injection (GDI) engines during cold start and part load operation. The problem of optimizing combustion efficiency and improving its stability during such operating modes is even more critical for high performance engines, which are designed to maximize charge efficiency especially at medium-high engine speeds.
Technical Paper

Application of Acoustic and Vibration-Based Knock Detection Techniques to a High Speed Engine

2017-03-28
2017-01-0786
Knock control systems based on engine block vibrations analysis are widely adopted in passenger car engines, but such approach shows its main limits at high engine speeds, since knock intensity measurement becomes less reliable due to the increased background mechanical noise. For small two wheelers engines, knock has not been historically considered a crucial issue, mainly due to small-sized combustion chambers and mixture enrichment. Due to more stringent emission regulations and in search of reduced CO2 emissions, an effective on-board knock controller acquires today greater importance also for motorcycle applications, since it could protect the engine when different fuel types are used, and it could significantly reduce fuel consumption (by avoiding lambda enrichment and/or allowing higher compression ratios to be adopted). These types of engines typically work at high rotational speeds and the reduced signal to noise ratio makes knock onset difficult to identify.
Technical Paper

Virtual GDI Engine as a Tool for Model-Based Calibration

2012-09-10
2012-01-1679
Recent and forthcoming fuel consumption reduction requirements and exhaust emissions regulations are forcing the development of innovative and particularly complex intake-engine-exhaust layouts. In the case of Spark Ignition (SI) engines, the necessity to further reduce fuel consumption has led to the adoption of direct injection systems, displacement downsizing, and challenging intake-exhaust configurations, such as multi-stage turbocharging or turbo-assist solutions. Further, the most recent turbo-GDI engines may be equipped with other fuel-reduction oriented technologies, such as Variable Valve Timing (VVT) systems, devices for actively control tumble/swirl in-cylinder flow components, and Exhaust Gas Recirculation (EGR) systems. Such degree of flexibility has a main drawback: the exponentially increasing effort required for optimal engine control calibration.
Technical Paper

UEGO-based Exhaust Gas Mass Flow Rate Measurement

2012-09-10
2012-01-1627
New and upcoming exhaust emissions regulations and fuel consumption reduction requirements are forcing the development of innovative and particularly complex intake-engine-exhaust layouts. Especially in the case of Compression Ignition (CI) engines, the HC-CO-NOx-PM after-treatment system is becoming extremely expensive and sophisticated, and the necessity to further reduce engine-out emission levels, without significantly penalizing fuel consumption figures, may lead to the adoption of intricate and challenging intake-exhaust systems configurations. The adoption of both long- and short-route Exhaust Gas Recirculation (EGR) systems is one example of such situation, and the need to precisely measure (or estimate) mass flow rates in the various elements of the gas exchange circuit is one of the consequences.
Technical Paper

Thermal Management Strategies for SCR After Treatment Systems

2013-09-08
2013-24-0153
While the Diesel Particulate Filter (DPF) is actually a quasi-standard equipment in the European Diesel passenger cars market, an interesting solution to fulfill NOx emission limits for the next EU 6 legislation is the application of a Selective Catalytic Reduction (SCR) system on the exhaust line, to drastically reduce NOx emissions. In this context, one of the main issues is the performance of the SCR system during cold start and warm up phases of the engine. The exhaust temperature is too low to allow thermal activation of the reactor and, consequently, to promote high conversion efficiency and significant NOx concentration reduction. This is increasingly evident the smaller the engine displacement, because of its lower exhaust system temperature (reduced gross power while producing the same net power, i.e., higher efficiency).
Technical Paper

Model-Based Idle Speed Control for a High Performance Engine

2003-03-03
2003-01-0358
A study, for future applications, of a model-based Idle Speed Control (ISC) system for the L535 Lamborghini 6.2L-48 valve V12 gasoline engine is presented in this paper. Main features of the controller are: Real-time auto-adaptation; Synchronization of Throttle Angle (TA) opening with Spark Advance (SA) timing, through model-based Drive-by-Wire (DBW) control strategies; Auto-adaptive management of the absolute pressure levels in the two, completely separated, intake manifolds; Feed-forward compensation for known loads; Integrated Air-to-Fuel Ratio (AFR) control at idle. Design targets are: Idle speed error from the nominal value imperceptible by the driver, considering that this study is for a high performance engine; Emissions reduction; Minimization of the engine speed undershoot (overshoot) when applying (removing) unknown loads.
Technical Paper

Fast Algorithm for Individual Cylinder Air-Fuel Ratio Control

2005-10-24
2005-01-3759
Individual cylinder Air-to-Fuel Ratio (AFR) control has been proposed by many authors in recent years as a technique of controlling the AFR of the various cylinders individually, based on a single lambda measurement for each engine bank. Most of such works describe theoretical and experimental efforts to develop and identify an observer, able to estimate the AFR of each cylinder separately. In this paper, a simple individual cylinder AFR controller is described, based on the observation that any type of AFR disparity between the various cylinders is reflected in a specific harmonic content of the AFR signal spectrum. In particular, any type of AFR disparity will be reflected on a limited number of frequencies, or harmonics, multiple of the engine cycle frequency.
Technical Paper

Analysis of a Dual Mass Flywheel System for Engine Control Applications

2004-10-25
2004-01-3016
Dual Mass Flywheel (DMF) systems are today widely adopted in compression ignition automotive powertrains, due to the well-known positive effects on vehicle drivability and fuel consumption. This work deals with the analysis of undesirable effects that the installation of a DMF may cause to engine and transmission dynamics, with the objective of understanding the causes and of determining possible solutions to be adopted. The main results of an experimental and simulation analysis, focused on the rotational dynamics of a powertrain equipped with a DMF system, are presented in the paper. A mathematical model of the physical system has been developed, validated, and used to investigate, in a simulation environment, the anomalous behavior of the powertrain that had been experimentally observed under specific conditions. Particular attention has been devoted to two aspects that are considered critical: engine cranking phase; interactions between powertrain dynamics and idle speed control.
Technical Paper

Fast Algorithm for On-Board Torque Estimation

1999-03-01
1999-01-0541
Electronic Throttle Control systems substitute the driver in commanding throttle position, with the driver acting on a potentiometer connected to the accelerator pedal. Such strategies allow precise control of air-fuel ratio and of other parameters, e.g. engine efficiency or vehicle driveability, but require detailed information about the engine operating conditions, in order to be implemented inside the Electronic Control Unit (ECU). In order to determine throttle position, an interpretation of the driver desire (revealed by the accelerator pedal position) is performed by the ECU. In our approach, such interpretation is carried out in terms of a torque request that can be appropriately addressed knowing the actual engine-vehicle operating conditions, which depend on the acting torques. Estimates of the torque due to in-cylinder pressure (indicated torque), as well as the torque required by the vehicle (load torque), must then be available to the control module.
Technical Paper

Development and Software in the Loop Validation of a Model-based Water Injection Combustion Controller for a GDI TC Engine

2019-04-02
2019-01-1174
Turbocharged (TC) engines work at high Indicated Mean Effective Pressure (IMEP), resulting in high in-cylinder pressures and temperatures, improving thermal efficiency, but at the same time increasing the possibility of abnormal combustion events like knock and pre-ignition. To mitigate knocking conditions, engine control systems typically apply spark retard and/or mixture enrichment, which decrease indicated work and increase specific fuel consumption. Many recent studies have advocated Water Injection (WI) as an approach to replace or supplement existing knock mitigation techniques. Water reduces temperatures in the end gas zone due to its high latent heat of vaporization. Furthermore, water vapor acts as diluent in the combustion process. In this paper, the development of a novel closed-loop, model-based WI controller is discussed and critically analyzed.
Technical Paper

Automatic Combustion Control for Calibration Purposes in a GDI Turbocharged Engine

2014-04-01
2014-01-1346
Combustion phasing is crucial to achieve high performance and efficiency: for gasoline engines control variables such as Spark Advance (SA), Air-to-Fuel Ratio (AFR), Variable Valve Timing (VVT), Exhaust Gas Recirculation (EGR), Tumble Flaps (TF) can influence the way heat is released. The optimal control setting can be chosen taking into account performance indicators, such as Indicated Mean Effective Pressure (IMEP), Brake Specific Fuel Consumption (BSFC), pollutant emissions, or other indexes inherent to reliability issues, such as exhaust gas temperature, or knock intensity. Given the high number of actuations, the calibration of control parameters is becoming challenging.
Technical Paper

Combined Optimization of Energy and Battery Thermal Management Control for a Plug-in HEV

2019-10-07
2019-24-0249
This paper presents an optimization algorithm, based on discrete dynamic programming, that aims to find the optimal control inputs both for energy and thermal management control strategies of a Plug-in Hybrid Electric Vehicle, in order to minimize the energy consumption over a given driving mission. The chosen vehicle has a complex P1-P4 architecture, with two electrical machines on the front axle and an additional one directly coupled with the engine, on the rear axle. In the first section, the algorithm structure is presented, including the cost-function definition, the disturbances, the state variables and the control variables chosen for the optimal control problem formulation. The second section reports the simplified quasi-static analytical model of the powertrain, which has been used for backward optimization. For this purpose, only the vehicle longitudinal dynamics have been considered.
Technical Paper

Performance Assessment of a Model-Based Combustion Control System to Decrease the Brake Specific Fuel Consumption

2023-08-28
2023-24-0027
The challenge of industrial carbon footprint reduction is led by the engine manufacturers that are developing new technologies and fuels to lower CO2 emissions. Although the deployment of relevant investments for the development of battery electric vehicles, diesel, and gasoline cars are still widely used, especially for their longer operating range, faster refueling, and lower cost. For this reason, more efficient traditional internal combustion engines can guide the transition towards new propulsion systems. In this document, the innovative piston damage and exhaust gas temperature models previously developed by the authors are reversed and coupled to manage the combustion process, increasing the overall energy conversion efficiency. The instantaneous piston erosion and the exhaust gas temperature at the turbine inlet are evaluated according to the models’ estimation which manages both the spark advance, and the target lambda.
Technical Paper

Modeling, Validation and Control Strategy Development of a Hybrid Super Sport Car Based on Lithium Ion Capacitors

2020-04-14
2020-01-0442
Today, the contribution of the transportation sector on greenhouse gases is evident. The fast consumption of fossil fuels and its impact on the environment have given a strong impetus to the development of vehicles with better fuel economy. Hybrid electric vehicles fit into this context with different targets, starting from the reduction of emissions and fuel consumption, but also for performance and comfort enhancement. Lamborghini has recently invested in the development of a hybrid super sport car, due to performance and comfort reasons. Aventador series gearbox is an Independent Shift Rod gearbox with a single clutch and during gear shifts, as all the single clutch gearbox do, it generates a torque gap. To avoid the additional weight of a Dual Clutch Transmission, a 48V Electric Motor has been connected to the wheels, in a P3 configuration, to fill the torque gap, and to habilitate regenerative braking and electric boost functions.
X