Refine Your Search

Search Results

Viewing 1 to 13 of 13
Journal Article

Real Gas Effects in High-Pressure Engine Environment

2010-04-12
2010-01-0627
Real gas effects are studied during the compression stroke of a diesel engine. Several different real gas models are compared to the ideal gas law and to the experimental pressure history. Comparisons are done with both 1-D and CFD simulations, and reasons and answers are found out for the observed differences between simulations and experimental data. The engine compression ratio was measured for accurate model predictions. In addition, a 300bar extreme pressure case is also analyzed with the real gas model since an engine capable for this performance level is currently being built at the Aalto University School of Science and Technology. Real gas effects are even more important in these extreme conditions than in normal operating pressures. Finally, it is shown that the predicted pressure history during an engine compression stroke by a real gas model is more accurately predicted than by the ideal gas law.
Technical Paper

In-Cylinder Flow Field of a Diesel Engine

2007-10-29
2007-01-4046
The flow through the valves of an engine cylinder head is very complex in nature due to very high gas velocities and strong flow separation. However, it is also the typical situation in almost every engine related flow. In order to gain better understanding of the flow features after the cylinder head, and to gain knowledge of the performance level that can be expected from CFD analysis, flow field measurements and computations were made in an engine rig. Particle image velocimetry (PIV) and paddle wheel measurements have been conducted in a static heavy-duty diesel engine rig to characterize the flow features with different valve lifts and pressure differences. These measurements were compared with CFD predictions of the same engine. The simulations were done with the standard k-ε turbulence model and with the RNG turbulence model using the Star-CD flow solver.
Technical Paper

CFD Modeling of the Initial Turbulence Prior to Combustion in a Large Bore Diesel Engine

2008-04-14
2008-01-0977
The study aims at providing more accurate initial conditions for turbulence prior to combustion with the help of a four valve, large bore diesel engine CFD model. Combustion simulations are typically done with a sector mesh and initial turbulence in these simulations is usually taken from relatively inaccurate correlations. This study also aims at developing a more accurate initial turbulence correlation for combustion simulations. A one-dimensional model was first used to provide boundary conditions as well as the initial flow conditions at the beginning of the simulation. Steady state and transient boundary conditions were studied. Also, the standard κ - ε and RNG/κ - ε turbulence models were compared. From the averaged values of turbulence kinetic energy and its dissipation rate over the cylinder volume, a re-tuned correlation for defining the initial turbulent conditions at bottom dead center (BDC) prior to the compression stroke is proposed.
Technical Paper

Conjugate Heat Transfer in CI Engine CFD Simulations

2008-04-14
2008-01-0973
The development of new high power diesel engines is continually going for increased mean effective pressures and consequently increased thermal loads on combustion chamber walls close to the limits of endurance. Therefore accurate CFD simulation of conjugate heat transfer on the walls becomes a very important part of the development. In this study the heat transfer and temperature on piston surface was studied using conjugate heat transfer model along with a variety of near wall treatments for turbulence. New wall functions that account for variable density were implemented and tested against standard wall functions and against the hybrid near wall treatment readily available in a CFD software Star-CD.
Technical Paper

Liquid Spray Data from an Optical Medium-Speed Diesel Engine and Its Comparison with CFD

2009-11-02
2009-01-2676
Experimental spray tip penetrations obtained from a large-bore medium-speed optical diesel engine were compared to CFD simulations. The optical spray results are unique as they are obtained from a running large-bore (200mm) diesel engine. The experimental spray tip penetration measurements were obtained during the early spray development period when the spray evaporation had not yet reached the quasi steady-state phase. The CFD simulations were conducted in both static chamber environment and in engine conditions. The fuel injection boundary conditions were obtained from 1-D simulations. Within the error margins associated with the experimental and computational data, relatively good accuracy was obtained between measured and simulated spray tip penetration. It was also observed that it is very important to have accurate fuel injection mass flow rate data. This was observed after a sensitivity analysis was made for the injection duration and fuel mass quantity.
Technical Paper

Improving the Accuracy of 1-D Fuel Injection Modeling

2012-04-16
2012-01-1256
In this study, one-dimensional fluid dynamics simulation software was utilized in producing common rail diesel fuel injection for varying injection parameters with enhanced accuracy. Injection modeling refinement is motivated by improved comprehension of the effects of various physical phenomena within the injector. In addition, refined injection results yield boundary conditions for three-dimensional CFD simulations. The criteria for successful simulation results were evaluated upon experimental test run data that have been reliably obtained, primarily total injected mass per cycle. A common rail diesel fuel delivery system and its core mechanics were presented. System factors most critical to fuel delivery were focalized. Models of two solenoid-type common rail injectors of different physical sizes and applications were enhanced.
Technical Paper

Interaction of Multiple Fuel Sprays in a Heavy-Duty Diesel Engine

2011-04-12
2011-01-0841
This paper aims to study numerically the influence of the number of fuel sprays in a single-cylinder diesel engine on mixing and combustion. The CFD simulations are carried out for a heavy-duty diesel engine with an 8 hole injector in the standard configuration. The fuel spray mass-flow rate was obtained from 1D-simulations and has been adjusted according to the number of nozzle holes to keep the total injected fuel mass constant. Two cases concerning the modified mass-flow rate are studied. In the first case the injection time was decreased whereas in the second case the nozzle hole diameter was decreased. In both cases the amount of nozzle holes (i.e. fuel sprays) was increased in several steps to 18 holes. Quantitative analyses were performed for the local air-fuel ratio, homogeneity of mixture distribution, heat release rate and the resulting in-cylinder pressure.
Technical Paper

Effect of Turbulence Boundary Conditions to CFD Simulation

2011-04-12
2011-01-0835
The CFD simulation of diesel combustion needs as accurate initial values as possible to be reliable. In this paper the effect of spatial distribution of state and turbulence values at intake valve closure to those distributions prior to SOI is studied. Totally five cases of intake and compression stroke simulations are run. The only change between cases is the intake boundary condition of turbulence. In the last case the average values of p, T, k, ε and swirl number at intake valve closure are used as initial values to compression simulation. The turbulence in the engine cylinder is mainly generated in the very fast flow over the intake valves. In this paper the effect of boundary conditions of turbulence to its level at intake valve closure is studied. Several cases are simulated with different boundary conditions of turbulence. Also the swirl number is compared to experimental value.
Technical Paper

Analyzing Local Combustion Environment with a Flamelet Model and Detailed Chemistry

2012-04-16
2012-01-0150
Measurements have been done in order to obtain information concerning the effect of EGR for the smoke and NOx emissions of a heavy-duty diesel engine. Measured smoke number and NOx emissions are explained using detailed chemical kinetic calculations and CFD simulations. The local conditions in the research engine are analyzed by creating equivalence ratio - temperature (Phi-T) maps and analyzing the CFD results within these maps. The study uses different amounts of EGR and the standard EN590 diesel fuel. The detailed chemical kinetic calculations take into account the different EGR rates. The CFD calculations are made with a flamelet-based combustion model together with detailed chemistry. The results are compared to a previous study where a hybrid local flame area evolution model combined with an eddy breakup - type model was used in the CFD simulations.
Technical Paper

Large Eddy Simulation of the Intake Flow in a Realistic Single Cylinder Configuration

2012-04-16
2012-01-0137
The present paper focuses on gaining a deeper understanding about the turbulent flow inside an engine cylinder using large eddy simulation. While the main motivation of the current study is to gain a deeper understanding of the flow patterns and especially about the swirl, the background motivation of this study is the development and testing of suitable methods for the large eddy simulation of combustion engines and the validation of the used simulation methodology. In particular, we study the swirl and other flow features generated by the intake jets inside the cylinder. The simulated geometry is the Sisu Diesel 84 engine cylinder where the exhaust valves are closed and the intake valves have constant valve lifts. Furthermore, the piston has been removed so that the flow is able to exit from the opposite end of the cylinder.
Technical Paper

Applying Soot Phi-T Maps for Engineering CFD Applications in Diesel Engines

2005-10-24
2005-01-3856
Soot modeling has become increasingly important as diesel engine manufacturers are faced with constantly tightening soot emission limits. As such the accuracy of the soot models used is more and more important but at the same time 3-D CFD engine studies require models that are computationally not too demanding. In this study, soot Phi-T maps created with detailed chemistry code have been used to develop a soot model for engineering purposes. The proposed soot model was first validated against detailed chemistry results in premixed laminar environment. As turbulence in engines is of major importance, it was taken into account in the soot oxidation part of the model with the laminar and turbulent characteristic time- type of approach. Finally, the model was tested in a large bore Diesel engine with varying loads. Within the steps described above, the proposed model was also compared with the well-known Hiroyasu-Magnussen soot model.
Technical Paper

Computational Considerations of Fuel Spray Mixing in an HCCI Operated Optical Diesel Engine

2009-04-20
2009-01-0710
Fuel spray mixing has been analyzed numerically in a single-cylinder optical research engine with a flat piston top. In the study, a narrow spray angle has been used to align the sprays towards the piston top. Fuel spray mass flow rate has been simulated with 1-D code in order to have reliable boundary condition for the CFD simulations. Different start of fuel injections were tested as well as three charge air pressures and two initial mixture temperatures. Quantitative analysis was performed for the evaporation rates, mixture homogeneity at top dead center, and for the local air-fuel ratios. One of the observations of this study was that there exists an optimum start of fuel injection when the rate of spray evaporation and the mixture homogeneity are considered.
Technical Paper

Optical Investigation of the Diesel Spray Characteristics and Spray Geometry Prediction Model by Artificial Neural Network

2023-04-11
2023-01-0302
Spray evolution in diesel engines plays a crucial role in fuel-air mixing, ignition behavior, combustion characteristics, and emissions. There is a variety of phenomenological spray models and computational fluid dynamics (CFD) simulations have been applied to characterize the spray evolution and fuel-air mixing. However, most studies were focused on the spray phenomenon under a limited range of injection and ambient conditions. Especially, the prediction of spray geometry in multi-hole injectors remains a great challenge due to the lack of understanding of the complicated flow dynamics. To overcome the challenges, a series of spray experiments were carried out in a constant volume spray chamber (CVSC) coupled with high-speed Mie-scattering imaging to obtain the spray characteristics at various injection and ambient conditions.
X