Refine Your Search

Search Results

Viewing 1 to 10 of 10
Technical Paper

Automated Model Evaluation and Verification of Aircraft Components

2010-11-02
2010-01-1806
The trend of moving towards model-based design and analysis of new and upgraded aircraft platforms requires integrated component and subsystem models. To support integrated system trades and design studies, these models must satisfy modeling and performance guidelines regarding interfaces, implementation, verification, and validation. As part of the Air Force Research Laboratory's (AFRL) Integrated Vehicle and Energy Technology (INVENT) Program, standardized modeling and performance guidelines have been established and documented in the Modeling Requirement and Implementation Plan (MRIP). Although these guidelines address interfaces and suggested implementation approaches, system integration challenges remain with respect to computational stability and predicted performance over the entire operating region for a given component. This paper discusses standardized model evaluation tools aimed to address these challenges at a component/subsystem level prior to system integration.
Technical Paper

Hardware-in-the-Loop Power Extraction Using Different Real-Time Platforms

2008-11-11
2008-01-2909
Aircraft power demands continue to increase with the increase in electrical subsystems. These subsystems directly affect the behavior of the power and propulsion systems and can no longer be neglected or assumed linear in system analyses. The complex models designed to integrate new capabilities have a high computational cost. Hardware-in-the-loop (HIL) is being used to investigate aircraft power systems by using a combination of hardware and simulations. This paper considers three different real-time simulators in the same HIL configuration. A representative electrical power system is removed from a turbine engine simulation and is replaced with the appropriate hardware attached to a 350 horsepower drive stand. Variables are passed between the hardware and the simulation in real-time to update model parameters and to synchronize the hardware with the model.
Technical Paper

Effects of Transient Power Extraction on an Integrated Hardware-in-the-Loop Aircraft/Propulsion/Power System

2008-11-11
2008-01-2926
As aircraft continue to increase their power and thermal demands, transient operation of the power and propulsion subsystems can no longer be neglected at the aircraft system level. The performance of the whole aircraft must be considered by examining the dynamic interactions between the power, propulsion, and airframe subsystems. Larger loading demands placed on the power and propulsion subsystems result in thrust, speed, and altitude transients that affect the aircraft performance and capability. This results in different operating and control parameters for the engine that can be properly captured only in an integrated system-level test. While it is possible to capture the dynamic interactions between these aircraft subsystems by using simulations alone, the complexity of the resulting system model has a high computational cost.
Technical Paper

Large Displacement Stability by Design for Robust Aircraft Electric Power Systems

2012-10-22
2012-01-2197
More electric aircraft (MEA) architectures have increased in complexity leading to a demand for evaluating the dynamic stability of their advanced electrical power systems (EPS). The system interactions found therein are amplified due to the increasingly integrated subsystems and on-demand power requirements of the EPS. Specifically, dynamic electrical loads with high peak-to-average power ratings as well as regenerative power capabilities have created a major challenge in design, control, and integration of the EPS and its components. Therefore, there exists a need to develop a theoretical framework that is feasible and useful for the specification and analysis of the stability of complex, multi-source, multi-load, reconfigurable EPS applicable to modern architectures. This paper will review linear and nonlinear system stability analysis approaches applicable to a scalable representative EPS architecture with a focus on system stability evaluation during large-displacement events.
Technical Paper

Integrated Hardware-in-the-Loop Simulation of a Complex Turbine Engine and Power System

2006-11-07
2006-01-3035
The interdependency between propulsion, power, and thermal subsystems on military aircraft such as the F-35 Joint Strike Fighter (JSF) and F-22 Raptor continues to increase as advanced war-fighting capabilities including solid-state radars, electronic attack, electric actuation, and Directed Energy Weaponry (DEW) expand to meet Air Force needs. Novel analysis and testing methodologies are required to predict these interdependencies and address adverse interactions prior to costly hardware prototyping. As a result, the Air Force Research Laboratory (AFRL) has established a dynamic hardware-in-the-loop (HIL) test-bed wherein transient simulations can be integrated through advanced real-time simulation with prototype hardware for integrated system studies and analysis. This paper details a test-bed configuration where a dynamic simulation of an aircraft turbine engine is utilized to control a dual-head electric drive stand.
Technical Paper

Transient Turbine Engine Modeling and Real-Time System Integration Prototyping

2006-11-07
2006-01-3040
Aircraft power demands continue to increase with the increase in electrical subsystems. These subsystems directly affect the behavior of the power and propulsion systems and can no longer be neglected or assumed linear in system analyses. The complex models designed to integrate new capabilities have a high computational cost. This paper investigates the possibility of using a hardware-in-the-loop (HIL) analysis with real time integration. A representative electrical power system is removed from a turbine engine model simulation and replaced with the appropriate hardware attached to a 350 horsepower drive stand. In order to update the model to proper operating conditions, variables are passed between the hardware and the computer model. Using this method, a significant reduction in runtime is seen, and the turbine engine model is usable in a real time environment. Scaling is also investigated for simulations to be performed that exceed the operating parameters of the drive stand.
Technical Paper

Distributed Simulation of an Uninhabited Aerial Vehicle Power System

2004-11-02
2004-01-3193
Future Air Force intelligence, surveillance, and reconnaissance (ISR) platforms, such as high-altitude Uninhabited Aerial Vehicles (UAV), may drastically change the requirements of aircraft power systems. For example, there are potential interactions between large pulsed-power payloads and the turbine engine that could compromise the operation of the power system within certain flight envelopes. Until now, the development of large-scale, multi-disciplinary (propulsion, electrical, mechanical, hydraulic, thermal, etc.) simulations to investigate such interactions has been prohibitive due to the size of the system and the computational power required. Moreover, the subsystem simulations that are developed separately often are written in different commercial-off-the-shelf simulation programs.
Journal Article

Software Tools for Efficient Model-Based Design of Energy Optimized Aircraft

2012-10-22
2012-01-2176
The diverse and complex requirements of next-generation energy optimized aircraft (EOA) demand detailed transient and dynamic model-based design (MBD) to ensure the proper operation of numerous interconnected and interacting subsystems. In support of the U.S. Air Force's Integrated Vehicle Energy Technology (INVENT) program, several software tools have been developed and are in use that aid in the efficient MBD of next-generation EOA. Among these are subsystem model libraries, automated subsystem model verification test scripts, a distributed co-simulation application, and tools for system configuration, EOA mission building, data logging, plotting, post-processing, and visualization, and energy flow analysis. Herein, each of these tools is described. A detailed discussion of each tool's functionality and its benefits with respect to the goal of achieving successful integrated system simulations in support of MBD of EOA is given.
Journal Article

Electrical Accumulator Unit for the Energy Optimized Aircraft

2008-11-11
2008-01-2927
The movement to more-electric architectures during the past decade in military and commercial airborne systems continues to increase the complexity of designing and specifying the electric power system. In particular, the electrical power system (EPS) faces challenges in meeting the highly dynamic power demands of advanced power electronics based loads. This paper explores one approach to addressing these demands by proposing an electrical equivalent of the widely utilized hydraulic accumulator which has successfully been employed in hydraulic power system on aircraft for more than 50 years.
Journal Article

Standardized Electrical Power Quality Analysis in Accordance with MIL-STD-704

2010-11-02
2010-01-1755
MIL-STD-704 defines power quality in terms of transient, steady-state, and frequency-domain metrics that are applicable throughout a military aircraft electric power system. Maintaining power quality in more electric aircraft power systems has become more challenging in recent years due to the increase in load dynamics and power levels in addition to stricter requirements of power system characteristics during a variety of operating conditions. Further, power quality is often difficult to assess directly during experiments and aircraft operation or during data post-processing for the integrated electric power system (including sources, distribution, and loads). While MIL-STD-704 provides guidelines for compliance testing of electric load equipment, it does not provide any instruction on how to assess the power quality of power sources or the integrated power system itself, except the fact that power quality must be satisfied throughout all considered operating conditions.
X