Refine Your Search

Search Results

Viewing 1 to 5 of 5
Technical Paper

A Three-Dimensional Finite Element Model of the Human Ankle: Development and Preliminary Application to Axial Impulsive Loading

1996-11-01
962427
This work describes the development of a three-dimensional finite element model of the human ankle/foot complex. This model depicts the primary elements of a 50th percentile human ankle. It includes all the bones of the foot up to the distal tibia/fibula. It also contains the soft tissues of the plantar surface of the foot along with most of the ankle joint ligaments and retinacula. To calibrate the model, a plate with various initial velocities of 5, 7.5 and 10 mph is impacted at the plantar surface of the foot. The model is strictly stabilized by the intrinsic anatomical geometry and the ligamentous structure. It demonstrates to a great extent its capacity to replicate the dynamic response. Global responses of output acceleration and force time histories are obtained and compared reasonably well with experimental data.
Technical Paper

Investigation of Traumatic Brain Injuries Using the Next Generation of Simulated Injury Monitor (SIMon) Finite Element Head Model

2008-11-03
2008-22-0001
The objective of this study was to investigate potential for traumatic brain injuries (TBI) using a newly developed, geometrically detailed, finite element head model (FEHM) within the concept of a simulated injury monitor (SIMon). The new FEHM is comprised of several parts: cerebrum, cerebellum, falx, tentorium, combined pia-arachnoid complex (PAC) with cerebro-spinal fluid (CSF), ventricles, brainstem, and parasagittal blood vessels. The model's topology was derived from human computer tomography (CT) scans and then uniformly scaled such that the mass of the brain represents the mass of a 50th percentile male's brain (1.5 kg) with the total head mass of 4.5 kg. The topology of the model was then compared to the preliminary data on the average topology derived from Procrustes shape analysis of 59 individuals. Material properties of the various parts were assigned based on the latest experimental data.
Technical Paper

On the Development of the SIMon Finite Element Head Model

2003-10-27
2003-22-0007
The SIMon (Simulated Injury Monitor) software package is being developed to advance the interpretation of injury mechanisms based on kinematic and kinetic data measured in the advanced anthropomorphic test dummy (AATD) and applying the measured dummy response to the human mathematical models imbedded in SIMon. The human finite element head model (FEHM) within the SIMon environment is presented in this paper. Three-dimensional head kinematic data in the form of either a nine accelerometer array or three linear CG head accelerations combined with three angular velocities serves as an input to the model. Three injury metrics are calculated: Cumulative strain damage measure (CSDM) – a correlate for diffuse axonal injury (DAI); Dilatational damage measure (DDM) – to estimate the potential for contusions; and Relative motion damage measure (RMDM) – a correlate for acute subdural hematoma (ASDH).
Technical Paper

Development of Brain Injury Criteria (BrIC)

2013-11-11
2013-22-0010
Rotational motion of the head as a mechanism for brain injury was proposed back in the 1940s. Since then a multitude of research studies by various institutions were conducted to confirm/reject this hypothesis. Most of the studies were conducted on animals and concluded that rotational kinematics experienced by the animal's head may cause axonal deformations large enough to induce their functional deficit. Other studies utilized physical and mathematical models of human and animal heads to derive brain injury criteria based on deformation/pressure histories computed from their models.
Technical Paper

Machine Learning Based Model for Predicting Head Injury Criterion (HIC)

2020-03-31
2019-22-0016
The objective of this study is to develop a machine learning based predictive model from the available crash test data and use it for predicting injury metrics. In this study, a model was developed for predicting the head injury criterion, HIC15, using pre-test features (vehicle, test, occupant and restraint related). This problem was solved as a classification task, in which HIC15 with a threshold of 700 was divided into three classes i.e. low, medium and high. Crash test data was collected from the NHTSA database and was split into training and test datasets. Predictive models were developed from the training dataset using cross-validation while the test dataset was only used at the final step to evaluate the chosen predictive model. A logistic regression based predictive model was chosen as it demonstrated minimal overfitting and gave the highest F1 score (0.81) on the validation dataset. This chosen model gave a F1 score of 0.82 on the test (new/unseen) dataset.
X