Refine Your Search

Topic

Author

Search Results

Technical Paper

Collection and Chemical Analysis of Reclaimed Water and Condensate from the Mir Space Station

1996-07-01
961569
Potable- and hygiene-quality water will be supplied to crews on the International Space Station through the recovery and purification of spacecraft wastewaters, including humidity condensate, urine, and wash water. Contaminants released into the cabin air from human metabolism, hardware offgassing, flight experiments, and routine operations will be present in spacecraft humidity condensate; normal constituents of urine and bathing water will be present in urine and untreated wash water. This report describes results from detailed analyses of Mir reclaimed potable water, ground-supplied water, and humidity condensate. These results are being used to develop and test water recycling and monitoring systems for the International Space Station (ISS); to evaluate the efficiency of the Mir water processors; and to determine the potability of the recycled water on board.
Technical Paper

A Total Organic Carbon Analyzer for Space Potable Water Systems

1996-07-01
961570
A Total Organic Carbon (TOC) Analyzer has been developed for a Life Sciences Risk Mitigation Flight Experiment to be conducted on Spacehab and the Russian space station, Mir. Initial launch is scheduled for December 1996 (flight STS-81). The analyzer will be tested on the Orbiter in the Spacehab module, including when the Orbiter is docked at the Mir space station. The analyzer is scheduled to be launched again in May 1997 (STS-84) when it will be transferred to Mir. During both flights the analyzer will measure the quality of recycled and ground-supplied potable water on the space station. Samples will be archived for later return to the ground, where they will be analyzed for comparison to in-flight results. Water test samples of known composition, brought up with the analyzer, also will be used to test its performance in microgravity. Ground-based analyses of duplicates of those test samples will be conducted concurrently with the in-flight analyses.
Technical Paper

Development and Testing of the Microwave Sterilizable Access Port Prototype

1996-07-01
961567
The ability to aseptically remove samples and products, and the capability for addition of materials to sterile or otherwise microbially susceptible systems have always been compromised by the lack of a reliable means of sterilizing the mating fixtures. Cultures of mammalian cells are particularly vulnerable to microbial contamination due to the complexity of nutrient media and the lengthy periods required for cell growth. The Microwave Sterilizable Access Port has been developed to overcome this limitation. The system consists of three primary components: a microwave power source, a combined sterilization chamber/in-line valve port assembly, and a specimen transfer interface. Microwave energy is transmitted via coaxial cable to a small pressurized chamber that serves as a sterile transition between the surrounding environment and the system during transfer of materials.
Technical Paper

Humidity Condensate Sampling System for Shuttle, Mir and International Space Station

1998-07-13
981764
Archival sampling of potable water and condensate for ground laboratory analysis has been an important part of the Shuttle-Mir program because of coolant leaks and other events on Mir that have affected water quality. We report here the development of and preliminary results from a novel device for single phase humidity condensate collection at system pressures. The sampler consists of a commercial-off-the-shelf Teflon® bladder and a custom reinforced Nomex® restraint that is sized properly to absorb the stress of applied pressures. A plastic Luer-Lock disconnect, with poppet actuated by a mating Luer-Lock fitting, prevents the contents from being spilled during transport. In principle, a sampler of any volume can be designed. The empty mass of the reusable one-liter sampler is only 63 grams. Several designs were pressure tested and found to withstand more than 3 atmospheres well in excess of typical spacecraft water or wastewater system pressures.
Technical Paper

Total Organic Carbon Analyzer For ISS

1998-07-13
981765
On the International Space Station (ISS), atmospheric humidity condensate and other waste waters will be recycled and treated to produce potable water for use by the crews. Space Station requirements include an on-orbit capability for real-time monitoring of key water quality parameters, such as total organic carbon (TOC), total inorganic carbon (TIC), total carbon (TC), pH, and conductivity, to ensure that crew health is protected during consumption of reclaimed water. The Crew Health Care System (CHeCS) for ISS includes an analyzer that has been designed to meet this requirement. The analyzer is adapted from commercially successful technology, and it measures TOC and TIC throughout the range from 1 to 50,000 μg/L, and TC from 1 to 100,000 μg/L. It measures pH between 2.0 and 12.0 pH units, and conductivity from 0.1 to 300 μmho/cm. The analyzer is scheduled for launch to ISS on mission 2A.1.
Technical Paper

Microbiological Analysis of Water in Space

1995-07-01
951683
One of the proposed methods for monitoring the microbial quality of the water supply aboard the International Space Station is membrane filtration. We adapted this method for space flight by using an off-the-shelf filter unit developed by Millipore. This sealed unit allows liquid to be filtered through a 0.45 μm cellulose acetate filter that sits atop an absorbent pad to which growth medium is added. We combined a tetrazolium dye with R2A medium to allow microbial colonies to be seen easily, and modified the medium to remain stable over 70 weeks at 25°C. This hardware was assembled and tested in the laboratory and during parabolic flight; a modified version was then flown on STS-66. After the STS-66 mission, a back-up plastic syringe and an all-metal syringe pump were added to the kit, and the hardware was used successfully to evaluate water quality aboard the Russian Mir space station.
Technical Paper

Capillary Electrophoresis for Spacecraft Drinking Water Analysis: Methods and Breadboard Development

1997-07-01
972464
This report describes the first two parts of a three-phase project to develop and test a spacecraft-compatible capillary electrophoresis (CE) instrument. This instrument is designed to monitor the quality of recycled potable water aboard spacecraft such as the International Space Station. Phase I involved selecting and validating methods for low mass-to-charge ratio (m/z) cations and anions by using a slightly modified commercial CE instrument as a model. The analytical performance of several published CE methods was assessed for their ability to detect targeted anions and cations listed in a NASA water quality standard. Direct and indirect UV absorption detection at a single wavelength (214 nm) was used, and separation selectivity and sensitivity were optimized at the expense of analysis time. Phase II focused on building a breadboard CE instrument and flight-testing it on NASA's KC-135 parabolic aircraft.
Technical Paper

Risk Mitigation Water Quality Monitor

1997-07-01
972463
On the International Space Station (ISS), atmospheric humidity condensate and other waste waters will be recycled and treated to produce potable water for use by the crews. Space station requirements include an on-orbit capability for real-time monitoring of key water quality parameters, such as total organic carbon, total inorganic carbon, total carbon, pH, and conductivity, to ensure that crew health is protected for consumption of reclaimed water. The Crew Health Care System for ISS includes a total organic carbon (TOC) analyzer that is currently being designed to meet this requirement. As part of the effort, a spacecraft TOC analyzer was developed to demonstrate the technology in microgravity and mitigate risks associated with its use on station. This analyzer was successfully tested on Shuttle during the STS-81 mission as a risk mitigation experiment. A total of six ground-prepared test samples and two Mir potable water samples were analyzed in flight during the 10-day mission.
Technical Paper

Chemical Analysis of Potable Water and Humidity Condensate Collected During the MIR-21 Mission

1997-07-01
972462
The primary source of potable water planned for the International Space Station will be generated from the reclamation of humidity condensate, urine, and hygiene waters. It is vital to crew health and performance that this reclaimed water be safe for human consumption, and that health risks associated with recycled water consumption be identified and quantified. Only recently has data been available on the chemical constituents in reclaimed waters generated in microgravity. Results for samples collected during Mir-21 reveal that both the reclaimed water and stored water are of potable quality, although the samples did not meet U.S. standards for total organic carbon (TOC), total phenols, and turbidity.
Technical Paper

Potable Water Treatment and Transfer from Shuttle to Mir

1997-07-01
972461
To satisfy a requirement to supply water to Mir station, a process for treating iodinated water on the Shuttle was developed and implemented. The treatment system consists of packed columns for removing iodine and a syringe-based injection system for adding ionic silver, the biocide used in Mir water. Technical and potable grade water is produced and transferred in batches using collapsible 44-liter contingency water containers (CWCs). Silver is added to the water via injection of a solution from preloaded syringes. Minerals are also added to water destined for drinking. During the previous four Shuttle-Mir docking missions a total of 2781 liters (735 gallons) of water produced by the Shuttle fuel cells was processed using this method and transferred to Mir. To verify the quality of the processed water, samples were collected during flight and returned for chemical analysis.
Technical Paper

Solid Phase Extraction of Polar Compounds in Water

1997-07-01
972465
The Water and Food Analytical Laboratory, at the Johnson Space Center is developing an alternative to EPA Method 625 for analyzing semivolatile organic compounds in water. The current EPA method uses liquid-liquid extraction. The alternative method being developed differs in the sample preparation phase by replacing gravity-dependent liquid-liquid extraction with solid phase extraction (SPE). The ultimate goal is to incorporate the optimum SPE conditions into an automated sample preparation process. The method shows promise with regard to anticipated polar compounds. Fourteen SPE resins and nine elution solvents were compared. For typical analytes encountered by our laboratory, a styrene-divinylbenzene SPE resin and an elution solvent mixture of methylene chloride and ethyl ether were found to give the highest extraction recoveries. A study is in progress to remove water from the extracts before GC/MS analysis.
Technical Paper

Water Analysis Results from Phase II of the NASA Early Human Testing Initiative 30-Day Closed Chamber Test

1997-07-01
972555
An important milestone in the ongoing effort by NASA to develop and refine closed-loop water recycling systems for human space flight was reached during the summer of 1996 with the successful completion of Phase II of the Lunar Mars Life Support Testing Program at Johnson Space Center. Part of Phase II involved testing a water-recycling system in a closed test chamber continuously occupied by four human subjects for thirty days. The Phase II crew began the test with a supply of water that had been processed and certified for human use. As the test progressed, humidity condensate, urine, and wastewater from personal hygiene and housekeeping activities were reclaimed and reused several times. Samples were collected from various points in the reclamation process during the thirty day test. The data verified the water-processing hardware can reliably remove wastewater contaminants and produce reclaimed water that meets NASA standards for hygiene- and potable-quality water.
Technical Paper

Evaluation of Methods for Remediating Biofilms in Spacecraft Potable Water Systems

1994-06-01
941388
Controlling microbial growth and biofilm formation in spacecraft water-distribution systems is necessary to protect the health of the crew. Methods to decontaminate the water system in flight may be needed to support long-term missions. We evaluated the ability of iodine and ozone to kill attached bacteria and remove biofilms formed on stainless steel coupons. The biofilms were developed by placing the coupons in a manifold attached to the effluent line of a simulated spacecraft water-distribution system. After biofilms were established, the coupons were removed and placed in a treatment manifold in a separate water treatment system where they were exposed to the chemical treatments for various periods. Disinfection efficiency over time was measured by counting the bacteria that could be recovered from the coupons using a sonication and plate count technique. Scanning electron microscopy was also used to determine whether the treatments actually removed the biofilm.
Technical Paper

GC/MS and CE Methods for the Analysis of Trace Organic Acids in Reclaimed Water Supplies

1994-06-01
941392
The objective of this study was to investigate combining GC/MS and CE methods to allow sub-mg/L levels of organic acids to be determined in various water samples. This study also served as a basis for evaluating these instruments for in-flight spacecraft water-quality monitoring and to help determine the modifications needed to convert terrestrial hardware for use in microgravity environments. This paper reports on current GC/MS and CE method development and data generated from some recent spacecraft-related water samples. Plans for further method development are also discussed.
Technical Paper

Depletion of Biocidal Iodine in a Stainless Steel Water System

1994-06-01
941391
Iodine depletion in a simulated water storage tank and distribution system was examined to support a larger research program aimed at developing disinfection methods for spacecraft potable water systems. The main objective of this study was to determine the rate of iodine depletion with respect to the surface area of the stainless steel components contacting iodinated water. Two model configurations were tested. The first, representing a storage and distribution system, consisted of a stainless steel bellows tank, a coil of stainless steel tubing and valves to isolate the components. The second represented segments of a water distribution system and consisted of eight individual lengths of 21-6-9 stainless tubing similar to that used in the Shuttle Orbiter. The tubing has a relatively high and constant surface area to volume ratio (S/V) and the bellows tank a lower and variable S/V.
Technical Paper

Development and (Evidence for) Destruction of Biofilm with Pseudomonas aeruginosa as Architect

1991-07-01
911404
Disinfection and maintenance of an acceptable level of asepsis in spacecraft potable water delivery systems is a formidable task. The major area of research for this project has been to monitor the formation and growth of biofilm, and biofilm attached microorganisms, on stainless steel surfaces (specifically coupons), and the use of ozone for the elimination of these species in a closed loop system. A number of different techniques have been utilized during the course of a typical run. Scraping and sonication of coupon surfaces with subsequent plating as well as epifluorescence microscopy have been utilized to enumerate biofilm protected Pseudomonas aeruginosa. In addition, scanning electron microscopy is the method of choice to examine the integrity of the biofilm. For ozone determinations, the indigo decolorization spectrophotometric method seems most reliable. Both high- and low-nutrient cultured P. aeruginosa organisms were the target species for the ozone disinfection experiments.
Technical Paper

Biofilm Formation and Control in a Simulated Spacecraft Water System: Two-Year Results

1991-07-01
911403
The ability of iodine to maintain microbial water quality in a simulated spacecraft water system is being studied. An iodine level of about 2.0 mg/L is maintained by passing ultrapure influent water through an iodinated ion exchange resin. Six liters are withdrawn daily and the chemical and microbial quality of the water is monitored regularly. Stainless steel coupons used to monitor biofilm formation are being analyzed by culture methods, epifluorescence microscopy, and scanning electron microscopy. Results from the first two years of operation show a single episode of high bacterial colony counts in the iodinated system. This growth was apparently controlled by replacing the iodinated ion exchange resin. Scanning electron microscopy indicates that the iodine has limited but not completely eliminated the formation of biofilm during the first two years of operation.
Technical Paper

Water Quality Program Elements for Space Station Freedom

1991-07-01
911400
Space Station Freedom (SSF) will be operational for up to 30 years with missions lasting up to 180 days. Because of the need for large amounts of potable and hygiene water for the crews, it will not be practical to supply water from the ground (as was done for Skylab) or to generate water from fuel cells (as is done for the Shuttle). Hence, waste and metabolic waters will be reclaimed and recycled in SSF. Because of the unique nature of the water sources and the closed loop recycling processes, providing safe water will be a challenging task. Developing a program for the verification of SSF water quality to ensure crew health is the responsibility of NASA's Medical Sciences Division at the Johnson Space Center (JSC). This program is being implemented through the Environmental Health System (EHS). This paper will describe the strategy for the development of water quality criteria and standards, and the associated monitoring requirements.
Technical Paper

The Development of a Volatile Organics Concentrator for Use in Monitoring Space Station Water Quality

1991-07-01
911435
An approach to the isolation and concentration of volatile organic compounds from a water sample prior to chemical analysis in a microgravity environment has been previously described (Reference 1). The Volatile Organics Concentrator (VOC) system was designed for attachment to a gas chromatograph/mass spectrometer (GC/MS) for analysis of the volatile organics in water on Space Station Freedom. The VOC concept utilizes a primary solid sorbent for collection and concentration of the the organics from water, with subsequent transfer using nitrogen gas through a permeation dryer tube to a secondary solid sorbent tube. The secondary solid sorbent is thermally desorbed to a gas chromatograph for separation of the volatiles which are detected using a mass spectrometer.
Technical Paper

Recent Experiences with Iodine Water Disinfection in Shuttle

1990-07-01
901356
Microbial proliferation in the STS potable water system is prevented by maintaining a 2-5 ppm iodine residual. The iodine is added to fuel cell water by an iodinated ion exchange resin in the Microbial Check Valve (MCV). Crew comments indicated excessive iodine in the potable water. To better define the problem, a method of in-flight iodine analysis was developed. Inflight analysis during STS-30 and STS-28 indicated iodine residuals were generally in the 9-13 ppm range. It was determined that the high iodine residual was caused by MCV influent temperatures in excess of 120 °F. This is well above the MCV operating range of 65-90 °F. The solution to this problem was to develop a resin suitable for the higher temperatures. Since 8 months were required to formulate a MCV resin suitable for the higher temperatures, a temporary solution was necessary. Two additional MCV's were installed on the chilled and ambient water lines leading into the galley to remove the excess iodine.
X