Refine Your Search

Search Results

Viewing 1 to 7 of 7
Technical Paper

Addressing the Heat Exchange Question for Thermo-Electric Generators

The use of thermo-electric (TE) generation systems in internal combustion engines (ICEs) to reduce the carbon dioxide emission by harnessing the exhaust thermal energy is showing increasing promise. In addition, integration with after treatment devices is a development route for this technology that offers a great potential. Recent work on TE systems have shown that the overall efficiency of present TE generation systems are constrained by, the limitations of the conversion efficiency and operating temperatures of TE materials; fabrication quality, durability and thermal performance of the thermo-electric modules (TEMs); geometrical configuration and heat exchange efficiency of thermo-electric generator (TEG) and; conversion techniques of the TEG's electrical output to a form suitable for vehicle systems.
Technical Paper

Energy Recovery Systems for Engines

Energy recovery from IC engines has proved to be of considerable interest across the range of vehicle applications. The motivation is substantial fuel economy gain that can be achieved with a minimal affect on the “host” technology of the vehicle. This paper reviews the initial results of a research project whose objective has been to identify system concepts and control methods for thermal recovery techniques. A vapour power cycle is the means of energy transfer. The architecture of the system is considered along with support of the fuel economy claims with the results of some hybrid vehicle modelling. An overview of the latest experimental equipment and design of the heat exchanger is presented. The choice of control architecture and strategy, whose goal is overall efficiency of the engine system, is presented and discussed. Some initial control results are presented.
Technical Paper

Heat Recovery and Bottoming Cycles for SI and CI Engines - A Perspective

The pursuit of fuel economy is forcing technology change across the range of control and engine management technologies. Improved thermal management has been addressed in order to promote fast warm-up, improved exhaust gas after-treatment performance, and lower variance in combustion through a consistent and high cylinder head temperature. Temperature management of exhaust gas is of increasing interest because of the need to maintain efficiency in after-treatment devices. More effective temperature management places requirements on heat exchange systems, and offers the potential for bottoming and heat recovery cycles that use energy transferred from the exhaust stream. Turbo-compounding is already established in heavy duty engines, where a reduction in exhaust gas temperature is the consequence of an additional stage of expansion through an exhaust turbine. A new project in electric turbo-compounding offers flexibility in the control of energy extracted from the exhaust stream[1].
Technical Paper

A Comparison of Four Modelling Techniques for Thermoelectric Generator

The application of state-of-art thermoelectric generator (TEG) in automotive engine has potential to reduce more than 2% fuel consumption and hence the CO2 emissions. This figure is expected to be increased to 5%~10% in the near future when new thermoelectric material with higher properties is fabricated. However, in order to maximize the TEG output power, there are a few issues need to be considered in the design stage such as the number of modules, the connection of modules, the geometry of the thermoelectric module, the DC-DC converter circuit, the geometry of the heat exchanger especially the hot side heat exchanger etc. These issues can only be investigated via a proper TEG model. The authors introduced four ways of TEG modelling which in the increasing complexity order are MATLB function based model, MATLAB Simscape based Simulink model, GT-power TEG model and CFD STAR-CCM+ model. Both Simscape model and GT-Power model have intrinsic dynamic model performance.
Technical Paper

Optimization of the Number of Thermoelectric Modules in a Thermoelectric Generator for a Specific Engine Drive Cycle

Two identical commercial Thermo-Electric Modules (TEMs) were assembled on a plate type heat exchanger to form a Thermoelectric Generator (TEG) unit in this study. This unit was tested on the Exhaust Gas Recirculation (EGR) flow path of a test engine. The data collected from the test was used to develop and validate a steady state, zero dimensional numerical model of the TEG. Using this model and the EGR path flow conditions from a 30% torque Non-Road Transient Cycle (NRTC) engine test, an optimization of the number of TEM units in this TEG device was conducted. The reduction in fuel consumption during the transient test cycle was estimated based on the engine instantaneous Brake Specific Fuel Consumption (BSFC). The perfect conversion of TEG recovered electrical energy to engine shaft mechanical energy was assumed. Simulations were performed for a single TEG unit (i.e. 2 TEMs) to up to 50 TEG units (i.e. 100 TEMs).
Technical Paper

The Influence of Thermoelectric Materials and Operation Conditions on the Performance of Thermoelectric Generators for Automotive

An automotive engine can be more efficient if thermoelectric generators (TEG) are used to convert a portion of the exhaust gas enthalpy into electricity. Due to the relatively low cost of the incoming thermal energy, the efficiency of the TEG is not an overriding consideration. Instead, the maximum power output (MPO) is the first priority. The MPO of the TEG is closely related to not only the thermoelectric materials properties, but also the operating conditions. This study shows the development of a numerical TEG model integrated with a plate-fin heat exchanger, which is designed for automotive waste heat recovery (WHR) in the exhaust gas recirculation (EGR) path in a diesel engine. This model takes into account the following factors: the exhaust gas properties’ variation along the flow direction, temperature influence on the thermoelectric materials, thermal contact effect, and heat transfer leakage effect. Its accuracy has been checked using engine test data.
Technical Paper

Towards Optimal Performance of a Thermoelectric Generator for Exhaust Waste Heat Recovery from an Automotive Engine

Thermoelectric generator has very quickly become a hot research topic in the last five years because its broad application area and very attractive features such as no moving parts, low maintenance, variety of thermoelectric materials that total together cover a wide temperature range. The biggest disadvantage of the thermoelectric generator is its low conversion efficiency. So that when design and manufacture a thermoelectric generator for exhaust waste heat recovery from an automotive engine, the benefit of fuel consumption from applying a thermoelectric generator would be very sensitive to the weight, the dimensions, the cost and the practical conversion efficiency. Additionally, the exhaust gas conditions vary with the change of engine operating point. This creates a big challenge for the design of the hot side heat exchanger in terms of optimizing the electrical output of the thermoelectric generator during an engine transient cycle.