Refine Your Search

Topic

Search Results

Viewing 1 to 18 of 18
Journal Article

An Efficient, One-Dimensional, Finite Element Helical Spring Model for Use in Planar Multi-Body Dynamics Simulation

2013-04-08
2013-01-1118
The helical spring is one of fundamental mechanical elements used in various industrial applications such as valves, suspension mechanisms, shock and vibration absorbers, hand levers, etc. In high speed applications, for instance in the internal combustion engine or in reciprocating compressor valves, helical springs are subjected to dynamic and impact loading, which can result in a phenomenon called “surge”. Hence, proper design and selection of helical springs should consider modeling the dynamic and impact response. In order to correctly characterize the physics of a helical spring and its response to dynamic excitations, a comprehensive model of spring elasticity for various spring coil and wire geometries, spring inertial effects as well as contacts between the windings leading to a non-linear spring force behavior is required. In practical applications, such models are utilized in parametric design and optimization studies.
Technical Paper

An Investigation of Structural Effects of Fiber Matrix Reinforcement in Aluminum Diesel Pistons

1990-02-01
900536
Selective reinforcement of squeeze-cast aluminum pistons by fiber matrix inserts is a method of improving high temperature strength in piston zones subject to severe thermal and mechanical loads in highly loaded diesel engines. An investigation was carried out into the effects of selective fiber-matrix reinforcement on the thermal and stress state of an aluminum piston for a heavy-duty truck diesel engine application. Specifically, effects of geometry of the reinforced zone (fiber matrix), fiber density in the matrix, fiber orientation and piston combustion bowl shape were sought. Thermal and structural finite element analysis of the configurations were carried out. Thermal analyses were fully coupled to a simulation of a highly rated heavy-duty diesel.
Technical Paper

Warmup Characteristics of a Spark Ignition Engine as a Function of Speed and Load

1990-02-01
900683
The warmup characteristics of an engine have an important impact on a variety of design issues such as performance, emissions and durability. A computer simulation has been developed which permits a detailed transient simulation of the engine warmup period from initial ambient conditions to a fully warmed up state. The simulation combines a detailed crankangle-by-crankangle calculation of in-cylinder processes and of engine air flow, with finite element heat conduction calculations of heat transfer from the gases, through the structure to the coolant. The paper describes one particular application of the simulation to the warmup of a 2.5ℓ spark ignited engine from cold start to a fully warmed up state at several speeds ranging from 1600 to 5200 rpm and loads ranging from 25% to 100% at each speed. The response of structure temperatures, charge temperature at IVC and of the exhaust temperature has been calculated and is documented in terms of characteristic warmup times.
Technical Paper

A Comprehensive and Efficient Model of Belt-Drive Systems

2010-04-12
2010-01-1058
Belt-drive systems are a commonly used for power transmission in automotive applications, notably in engine and vehicle auxiliary subsystem drives. In order to characterize the physics of a belt drive system and its response to speed and load excitations, a comprehensive model of belt elasticity and of belt-pulley contact and friction is required. In practical applications such models are utilized in parametric design and optimization studies, and computational efficiency is therefore also a key requirement. In this paper a belt drive dynamics model is presented, in which the belt is modeled by means of geometrically exact cables that can undergo large rigid body motions but whose strains remain small. The Finite Element approach is used in order to efficiently discretize these elastic components. In addition, a state-of-the-art dynamic friction model (LuGre) is used in order to model the friction loads between the belt and pulleys.
Technical Paper

Application of a General Planar Kinematics and Multi-Body Dynamics Simulation Tool to the Analysis of Variable Valve Actuation Systems

2010-04-12
2010-01-1193
The advantages of Variable Valve Actuation (VVA) in the aspects of improved engine performance, fuel economy and reduced emissions are well known in the industry. However, the design and optimization of such systems is complex and costly. The design process of VVA mechanisms can be greatly accelerated through the use of sophisticated simulation tools. Predictive numerical analysis of systems to address design issues and evaluate design changes can assure the required performance and durability. One notable requirement for the analysis and design of novel mechanically-actuated VVA systems is a general-purpose fast and easy-to-use planar mechanism kinematics analyzer with cam solution/design features, which can be applied to general mechanisms.
Technical Paper

“Virtual Engine/Powertrain/Vehicle” Simulation Tool Solves Complex Interacting System Issues

2003-03-03
2003-01-0372
An integrated simulation tool has been developed, which is applicable to a wide range of design issues. A key feature introduced for the first time by this new tool is that it is truly a single code, with identical handling of engine, powertrain, vehicle, hydraulics, electrical, thermal and control elements. Further, it contains multiple levels of engine models, so that the user can select the appropriate level for the time scale of the problem (e.g. real-time operation). One possible example of such a combined simulation is the present study of engine block vibration in the mounts. The simulation involved a fully coupled model of performance, thermodynamics and combustion, with the dynamics of the cranktrain, engine block and the driveline. It demonstrated the effect of combustion irregularity on engine shaking in the mounts.
Technical Paper

Acceleration of Piston Durability Testing in Natural Gas Engines

1993-03-01
930275
The duration of piston durability tests is often shortened by increasing mechanical and thermal engine loads and loading frequency. Such durability tests are useful for assessing the structural integrity of new piston designs, but test results are generally not indicative of the expected service life. Furthermore, improper test procedures can introduce illegitimate failure modes which are not present in actual service. Two aluminum pistons were analyzed to gain a fundamental understanding of piston response due to accelerated test loads. The influence of engine speed, fuel/air ratio, intake manifold pressure and crankcase oil temperature on piston fatigue life was studied. Guidelines were established to aid in developing a more effective durability test procedure for natural gas engine pistons.
Technical Paper

An Integrated Design Analysis Methodology to Address Piston Tribological Issues

1993-03-01
930793
An integrated simulation methodology for the analysis of piston tribology is presented. The methodology is comprised of coupled models of piston secondary dynamics, skirt oil film elastohydrodynamic lubrication and wristpin bearing hydrodynamics, developed earlier by the authors. Models have been further expanded to calculate distributions of cumulative wear load on the skirt and cylinder and to account for details of skirt crankcase end geometry. The skirt elasticity model has also been improved to account for the effects of piston crown and pin boss stiffness in conventional, one-piece pistons. The model predicts piston assembly secondary motions, piston (skirt) friction, skirt and wristpin oil film pressures, transient deformations, skirt-cylinder contact/impact pressures and skirt and cylinder wear loads.
Technical Paper

Integrated Hydro-Mechanical Simulation of a Cam-Rocker-Unit Injector System to Address Noise and Vibration Issues

2006-04-03
2006-01-0887
Changing and more stringent emissions norms and fuel economy requirements often call for modifications in the fuel injection system of a Diesel engine. There exists a strong interaction between the injection system hydraulics and the dynamics of mechanical components within the unit injector and the camshaft-driven mechanical system used to pressurize it. Hence, accurate predictive analysis of design issues or evaluation of design changes requires highly coupled and integrated hydro-mechanical simulations, combining analysis of fuel injection hydraulics and the dynamics of all mechanical parts, including the cam-drive system. This paper presents an application of such an integrated model to the study and alleviation of an observed increase in mechanical vibration and related noise levels associated with a proposed design change in unit injectors and valve-train of a 6-cylinder truck diesel engine.
Technical Paper

A Model for Predicting Spatially and Time Resolved Convective Heat Transfer in Bowl-in-Piston Combustion Chambers

1985-02-01
850204
A new model for corrective in-cylinder heat transfer has been developed which calculates heat transfer coefficients based on a description of the in-cylinder flow field. The combustion chamber volume is divided into three regions in which differential equations for angular momentum, turbulent kinetic energy and turbulent dissipation are solved. The resultant heat transfer coefficients are strongly spatially non-uniform, unlike those calculated from standard correlations, which assume spatial uniformity. When spatially averaged, the heat transfer coefficient is much more peaked near TDC of the compression stroke as compared to that predicted by standard correlations. This is due to the model's dependence on gas velocity and turbulence, both of which are amplified near TDC. The new model allows a more accurate calculation of the spatial distribution of the heat fluxes. This capability is essential for calculation of heat transfer and of component thermal loading and temperatures.
Technical Paper

Examination of Key Issues in Low Heat Rejection Engines

1986-03-01
860316
A comprehensive diesel engine system model, representing in detail engine heat transfer processes, has been applied to a study of insulated diesel engines. The study involved a broad design analysis matrix covering a range of engine configurations with and without inter-cooling and exhaust heat recovery devices, three operating conditions and seven heat rejection packages. The main findig of this study is that the retained heat conversion efficiency (RHCE), of the in-cylinder heat retained by insulation to piston work, is 35-40 percent; these levels of RHCE are larger than those predicted by previous models. This means that a significant part of the retained heat is converted directly to piston work rather than being merely available in the exhaust stream, from which it would be recoverable with a much lower efficiency.
Technical Paper

Heat Radiation in D.I. Diesel Engines

1986-03-01
860445
A new model for radiation heat transfer in DI diesel engines has been developed. The model calculates the heat transfer rates as a function of the instantaneous values of the radiation zone size, radiation temperature, and of the absorption coefficient of the soot-laden gas. The soot concentration levels are calculated from kinetic expressions for soot formation and burnup. The spatial distribution of the radiant heat flux along the combustion chamber walls is calculated by a zonal model. The model has been applied to a conventional heavy duty highway DI diesel engine to generate predictions over a range of engine speeds and loads. These predictions indicated a wide variation in the ratio of radiation to the total heat transfer, ranging from less than ten percent to more than thirty percent, depending on the speed and load.
Technical Paper

Thermal Shock Calculations in I.C. Engines

1987-02-01
870162
An integrated transient engine simulation methodology has been developed to allow the calculation of a thermal shock as it propagates in time through the engine structure. It links, in a fully consistent way, a very comprehensive thermodynamic model of in-cylinder processes, including a detailed gas-phase heat transfer representation, with a turbocharger/air flow/plenum model and a finite element model of the structure. The methodology tracks the turbocharger boost increase and the cycle-by-cycle build-up of in-cylinder heat transfer during engine load and speed changes, producing a transient thermal response in the structure, until new steady-state is reached. The presented results highlight the calculated transient engine performance response and the thermal and stress response of various metal and ceramic components during sudden speed and load changes in heavy duty diesel engines.
Technical Paper

A New Approach to Integrating Engine Performance and Component Design Analysis Through Simulation

1988-02-01
880131
The development of I.C. engines is a sophisticated process bringing together a multitude of specialists. It is important that all of these specialists work together as a team and communicate effectively. One tool of communication can be an integrated engineering software package that simulates many of the important facets of engine operation, and describes their essential interactions. Then, if changes are made in one part of the hardware or in operating conditions, their effects on other components of the system can be assessed. This paper describes initial efforts made in that direction through the development of a comprehensive engine simulation code, IRIS, which permits a coupled analysis of engine performance and component thermal and structural state.
Technical Paper

Engine/Powertrain/Vehicle Modeling Tool Applicable to All Stages of the Design Process

2000-03-06
2000-01-0934
Engine and vehicle development is a multi-step process: from component design, to system integration, to system control. There is a multitude of tools that are currently being used in the industry for these purposes. They include detailed simulations for component design on one hand, and simplified models for system and control applications on the other hand. This introduces one basic problem: these tools are almost totally disconnected, with attendant loss of accuracy and productivity. An integrated simulation tool has been developed, which is applicable to all of the design issues enumerated above. A key feature introduced for the first time by this new tool is that it is truly a single code, with identical handling of engine and powertrain elements. Further, it contains multiple levels of engine and powertrain models, so that the user can select the appropriate level for the project at hand (e.g. depending on the time scale of the problem).
Technical Paper

Integrated Engine/Vehicle Simulation and Control

1999-03-01
1999-01-0907
An increasing emphasis is being placed in the vehicle development process on transient operation of engines and vehicles, and of engine/vehicle integration, because of their importance to fuel economy and emissions. Simulations play a large role in this process, complementing the more usual test-oriented hardware development process. This has fueled the development and continued evolution of advanced engine and powertrain simulation tools which can be utilized for this purpose. This paper describes a new tool developed for applications to transient engine and powertrain design and optimization. It contains a detailed engine simulation, specifically focused on transient engine processes, which includes detailed models of engine breathing (with turbocharging), combustion, emissions and thermal warm-up of components. Further, it contains a powertrain and vehicle dynamic simulation.
Technical Paper

A Valvetrain Design Analysis Tool with Multiple Functionality

2000-03-06
2000-01-0562
A multi-purpose valvetrain analysis tool has been developed, which is aimed at addressing all design issues arising in various stages of valvetrain development. Its capabilities include polynomial cam design, valvetrain mechanism kinematics, quasi-dynamic analysis, spring design/selection, multi-body elastic analysis of a single valvetrain with cam-follower and bearing tribology, and multi-valvetrain dynamics with camshaft torsional vibrations. The basic architecture of this tool is object-oriented. Its underlying basis is a library of cam design methods, kinematics operators, and dynamics/hydraulics/tribology primitives (masses, dampers, springs, etc.). On top of this basic system lies a higher-level library of valvetrain compound objects, which are pre-programmed sub-assemblies of valvetrain components built from the primitives. These high level objects minimize modeling effort and may be mixed with primitives, allowing construction of models for virtually any valvetrain.
Journal Article

Methodology for Predictive Friction Modeling in Direct-Acting Mechanical Bucket Valvetrain System

2015-04-14
2015-01-0677
Valvetrain friction can represent a substantial portion of overall engine friction, especially at low operating speed. This paper describes the methodology for predictive modeling of frictional losses in the direct-acting mechanical bucket tappet-type valvetrain. The proposed modeling technique combines advanced mathematical models based on established theories of Hertzian contact, hydrodynamic and elastohydrodynamic lubrication (EHL), asperity contact of rough surfaces, flash temperature, and lubricant rheology with detailed measurements of lubricant properties and surface finish, driven by a detailed analysis of valvetrain system kinematics and dynamics. The contributions of individual friction components to the overall valvetrain frictional loss were identified and quantified. Calculated valvetrain friction was validated against motored valvetrain friction torque measurements on two engines.
X