Refine Your Search

Search Results

Viewing 1 to 4 of 4
Technical Paper

Modeling and Control of an Electromechanical Disk Brake

1998-02-23
980600
In the scope of a research collaboration, ITT Automotive Europe and Darmstadt University of Technology are developing control strategies for a low-cost Brake-by-Wire system. However, since there is a wide range of variation in the efficiency of the gear units used in electromechanical brakes, this becomes a demanding task. The paper first describes the assembly and operation of ITT's early generation brake actuator. It introduces a model of the electromechanical brake with its structure and subsystems as a major tool in the development process. A detailed analysis of the signals, already available from the brake and the vehicle, is discussed for their advantages and disadvantages with regard to a possible use in the controller design. Different approaches for clamping-force, peripheral-force and brake-torque sensing are compared. An integrated clamping force sensor for feedback control of prototype actuators was developed.
Technical Paper

Model-Based Fault Detection of Diesel Intake with Common Production Sensors

2002-03-04
2002-01-1146
Methods for model-based fault detection are presented which detect a wide range of faults using only common production sensors, namely air mass sensor, manifold pressure sensor, manifold temperature sensor and engine speed. Five suitable reference models for fault detection are set up and identified at the test stand. The developed fault detection algorithms use the dependencies of the four sensor signals based on the reference models. Thereby five residuals and five symptoms are calculated. The model-based fault detection algorithms are implemented with a dSPACE Rapid Control Prototyping system and verified at the test stand. Measurements of online fault detection are shown.
Technical Paper

Model Based Fault Diagnosis of the Intake and Exhaust Path of Turbocharged Diesel Engines

2011-09-11
2011-24-0148
Faults in the intake and exhaust path of turbocharged common-rail Diesel engines can lead to an increase of emissions and performance losses. Standard fault detection strategies based on plausibility checks and trend checking of sensor data are not able to detect and isolate all faults appearing in the intake and exhaust path without employing additional sensors. By applying model based methods a limited sensor configuration can be used for fault detection. Therefore a model based fault diagnosis concept with parity equations is considered, [1]. In this contribution the fault diagnosis system, which comprises semi-physical thermodynamic turbocharger model, models of gas pressure in the intake and exhaust manifold, residual generation, residual to symptom transformation and fault diagnosis is presented.
Technical Paper

Clamping Force Estimation for a Brake-by-Wire Actuator

1999-03-01
1999-01-0482
In the scope of a research collaboration, Continental Teves (formerly ITT Automotive Europe) and Darmstadt University of Technology are developing control strategies for a low-cost Brake-by-Wire system, using no clamping-force or brake-torque sensor as feedback [1]. However, since there is a wide range of variation in the efficiency of the gear units used in electromechanical brakes, this becomes a demanding task. The paper first describes the assembly and operation of Continental Teves' third generation brake actuator, which is still operated using an integrated clamping force sensor [2]. It introduces the development environment of Darmstadt University of Technology, consisting of a brake test stand, a complex brake actuator model, and a simplified brake actuator model.
X