Refine Your Search

Search Results

Viewing 1 to 6 of 6
Journal Article

Prechamber Hot Jet Ignition of Ultra-Lean H2/Air Mixtures: Effect of Supersonic Jets and Combustion Instability

2016-04-05
2016-01-0795
An experiment has been developed to investigate the ignition characteristics of ultra-lean premixed H2/air mixtures by a supersonic hot jet. The hot jet is generated by combustion of a stoichiometric mixture in a small prechamber. The apparatus adopted a dual-chamber design in which a small-volume (1% of the main chamber by volume) prechamber was installed within a large-volume main chamber. A small orifice (nozzle) connects the two chambers. Spark initiated combustion inside the prechamber causes a pressure rise and pushes the gases though the nozzle, resulting in a hot jet that would ignite the lean mixture in the main chamber. Simultaneous high-speed Schlieren photography and OH* Chemiluminescence were applied to visualize the jet penetration and the ignition processes inside the main chamber. Hot Wire Pyrometry (HWP) was used to measure temperature distribution of the transient hot jet.
Technical Paper

Detailed Investigation into the Effect of Ozone Addition on Spark Assisted Compression Ignition Engine Performance and Emissions Characteristics

2019-04-02
2019-01-0966
The impact of 50 ppm intake seeding of ozone (O3) on performance and emissions characteristics was explored in a single-cylinder research engine operated under lean spark assisted compression ignition (SACI) conditions. Optical access into the engine enabled complementary crank angle resolved measurements of in-cylinder O3 concentration via ultraviolet (UV) light absorption. Experiments were performed at moderate loads (4 - 5 bar indicated mean effective pressure) and low-to-moderate engine speeds (800 - 1400 revolutions per minute). Each operating condition featured a single early main injection and maximum brake torque spark timing. Intake pressure was fixed at 1.0 bar, while intake temperatures were varied between 42 - 80 °C. Moderate amounts of internal residuals (12 - 20%) were retained through the use of positive valve overlap. Ozone addition was to found stabilize combustion relative to similar conditions without O3 addition by promoting end gas auto-ignition.
Technical Paper

Nanosecond Pulsed Ignition for Automotive Applications: Performance and Emissions Characteristics of Gasoline Combustion in an Optical Engine

2021-04-06
2021-01-0475
Performance and emissions characteristics were measured for a part- load operating point using an optically-accessible single-cylinder gasoline research engine equipped with three different exploratory nanosecond repetitively pulse discharge (NRPD) igniters. The three igniters investigated are as follows: 1) a four-prong advanced corona ignition system (ACIS) that produces large ignition volumes from streamer discharges, 2) a barrier discharge igniter (BDI) that generates strong surface plasma along the insulator that completely encases the power electrode, and 3) a J-hook non-resistive nanosecond spark (NRNS) igniter. For select conditions, high-speed imaging (20 kHz) of excited state hydroxyl (OH*) chemiluminescence was performed to measure flame development in-cylinder. An available NRPD pulse generator was used to supply positive direct current (DC) pulses (~ 10 ns pulse width) to each igniter at a fixed 100 kHz frequency.
Journal Article

Spark Assisted Compression Ignition Engine with Stratified Charge Combustion and Ozone Addition

2019-12-19
2019-01-2253
Performance and emissions characteristics for stratified charge spark assisted compression ignition (SACI) with 30 ppm of added ozone (O3) were explored in a single-cylinder, optically accessible, spray-guided, research engine. For the present study, intake pressure and temperature were fixed at 1.0 bar and 42°C respectively, with a range of engine loads (1.5 – 5.5 bar indicated mean effective pressure) and speeds (800 – 1600 revolutions per minute) explored. Fuel stratification achieved by a late-cycle injection of ~ 10–25% of the total fuel was used to maintain stable operation at lower engine loads. For each condition spark timing, second injection SOI, and fuel split ratio between the main and second injection were optimized to maximize engine performance while maintaining nitrogen oxide emissions (NOx) below 5 g/kg-fuel.
Technical Paper

CFD Analysis of Fuel Tank to Reduce Liquid Sloshing

2023-11-10
2023-28-0084
This paper demonstrates the sloshing phenomena of a cylindrical tank with and without baffles. The main objective of this study is to design baffles of different configurations to reduce sloshing in a cylindrical tank partially filled with gasoil-liquid subjected to only longitudinal acceleration and deceleration. Two different baffle designs have been introduced in the present study. A 3-D transient analysis of a cylindrical tank was carried out using ANSYS-FLUENT with and without baffles. Volume of Fluid (VOF) method was used to study the free surface profile of the fluid in the considered tank. Pressure distribution, velocity distribution and force distribution have been studied in the present study. It has been observed that the new design of baffle was able to reduce sloshing effectively.
Journal Article

A Numerical Investigation of Ignition of Ultra-Lean Premixed H2/Air Mixtures by Pre-Chamber Supersonic Hot Jet

2017-10-05
2017-01-9284
Gas engines often utilize a small-volume pre-chamber in which fuel is injected at near stoichiometric condition to produce a hot turbulent jet which then ignites the lean mixture in the main chamber. Hot jet ignition has several advantages over traditional spark ignition, e.g., more reliable ignition of extra-lean mixtures and more surface area for ignition resulting in faster burning and improved combustion burn time. Our previous experimental results show that supersonic jets could extend the lean flammability limit of fuel/air mixtures in the main chamber in comparison to subsonic jets. The present paper investigated the characteristics of supersonic hot jets generated by combustion of stoichiometric H2/air in a pre-chamber to understand the ignition mechanism of ultra-lean mixtures by supersonic hot jets.
X