Refine Your Search

Search Results

Viewing 1 to 9 of 9
Technical Paper

Synchronous Motor with Silicon Steel Salient Poles Rotor and All Coils Placed on the Stator

In this paper, we consider a new design of synchronous motor with salient poles rotor and all coils placed on the stator. This design, uses a laminated silicon steel rotor, which is not so expensive as a rotor with super strong permanent magnets. This design of machine eliminates copper rings on the rotor and brushes which is used in regular synchronous motors, and eliminates disadvantages involved with these arrangements. In an earlier publication, authors considered the opportunity realization of synchronous mode operation in the machine with salient pole rotor and DC stator excitation. Now, we consider the new synchronous mode operation with individual DC excitation of each the alternative current (AC) windings for realization the first, second and third phase synchronous machines. In theoretical basics of analyses and design of synchronous motors we pay more attention to the single-phase motor because it is the basis for design polyphase synchronous machines.
Technical Paper

Switching Losses in the Rotor of the Field Regulated Reluctance Machine

The field regulated reluctance machine is perspective for automotive transport electric drives. In this machine, the switching of a stator current is done in function of a rotor position. The massive salient rotor of the electric machine does not contain windings. The stator is fulfilled in the body and iron of serial ac induction motor. The stator winding sections, which conductors lay above between rotor poles intervals, serve as a excitation winding, and others sections, which conductors lay above rotor poles, the role of a armature winding. In most cases, the optimal winding current waveform is distinct from the sine waveform. For a case of use separate current sources for each phase, the ideal is rectangular waveform. At the rotation of the motor, the each stator section winding pass from a zone of “excitation” to a zone of “armature”. The stator has finite number of phases.
Technical Paper

One Phase Machine with DC Stator Excitation

In the report, a new version of machine with DC stator excitation is discussed. A brushless one phase electrical machine has a very simple design. Rotor has no windings. In generator mode operation, stator has one winding for DC stator excitation and one output winding. In motor mode operation, there is only one sensor of rotor position and one phase H-bridge inverter. One phase machine is symmetrical. Like in dc machines, it is possible to realize here: shunt, series, and separate excitation. In motor mode, the speed control is possible by vary armature (output winding) voltage, varying current excitation, and varying resistance in armature circuit. Simplicity construction and flexibility control opportunities can find for this machine wide application in vehicles. Motor, with series excitation, leads a torque-speed characteristic that is useful for transport power circuit applications. One phase machine is the basic for design of two and three phase machines.
Technical Paper

Synchronous Mode Operation in Electrical Machine with DC Stator Excitation

In transport applications, the synchronous motors are used for the power drives, because of their high operating efficiency, and controllable power factor. Brushless electrical machine with DC stator excitation have on the stator the armature and excitation windings. Rotor is a salient pole construction with laminated core and without coils. On base of this machine can be realized the DC machine. In the synchronous mode operation, there is no need the sensor of rotor position. It is need only alternative current (AC) voltage source. The advantages of the synchronous machine with DC stator excitation are: the simple brushless design, and controllable field excitation. In this paper, we consider the physical principle operation of a new machine with DC stator excitation in the synchronous mode operation. For analysis in a synchronous mode operation, the simplified model of electrical machine in steady state condition is used.
Technical Paper

Brushless Series Connected Machine with DC Stator Excitation

The brushless DC motors with permanent magnets are used primarily in law power applications. There are no limits on weight and motor dimensions in considered motors with DC stator excitation. Brushless series connected machine with DC stator excitation do not have rotor coils. Field coil and armature coils are mounted in the stator. Armature windings are connected to DC voltage source trough power transistors commutator. Power transistors are controlled by reflective optical sensors in function of rotor position. In the report, the new principle design of the motor with DC stator excitation is considered. The new principle of design supposes individual excitation for each of the armature phase. Such approach gives an opportunity to design electrical machine with any number of armature phases spaced in phase from each other. In series connected DC machines, the field winding is connected in series with the armature winding.
Technical Paper

Pulse Vector Control of Wound Rotor Induction Motor

The internal combustion engine gradually concedes the positions of traction unit. The electric drive including the electric motor, electro-generator, and diesel installation, comes on its change. The vector pulse control system of the wound rotor induction motor drive can be one of the perspective variants of such electric drive. The speed control of wound rotor induction motor with thyristor converter, assembled on base of three phase bridge circuit, is considered in report. The entrance circuits of the converter are connected to AC generator through motor stator windings, and converter output circuit (on the side of the dc voltage) connected to a two rotor windings connected in series. The third rotor winding can be connected in parallel or remain free. The stator magneto-motive force is created by switching thyristors. Magneto-motive force is rotating discretely with a step of 60 degrees.
Technical Paper

Software for Testing Alternators of Heavy-Duty Trucks and Cars

Heavy-duty trucks and self-propelled platforms are widely spread for the purpose of transportation of heavy and bulky loads. Power units of these vehicles consist of synchronous electric generators (alternators) driven by diesel engines. The generator supplies electricity to each motor-wheel of the vehicle and to all its systems. Alternators are also used in cars' and trucks' electric systems to supply their electric and electronic devices (e.g., headlights, safety systems, etc.). Substantial reserves of production and quality improvement of such alternators are hidden in their tests technique improvement. In this paper, the software is designed for mobile and stationary test stands of the alternators. The software was created using "LabVIEW" development system. It is designed to be used with "National Instruments®" hardware.
Technical Paper

Induction Mode Operation in the Electrical Machine with DC Stator Excitation

The purpose of this paper is to investigate opportunity to create a new type AC induction motor with the salient pole rotor (without winding) and both winding AC excitation and short circuited placed on the stator. There are some advantages in this design: The suggested design has a cold rotor. The stator short circuited and excitation windings are easier for cooling. The rotor has reduced weight in compare with regular induction motor rotor. The short circuit winding can be used for the current control like in the regular induction wound-rotor machines. In this case, the problem maintenance of the slip rings is eliminated. In this paper, we discuss theoretical opportunity for realization the induction mode operation in two and three phase machines. As a base for this, it serves the analyses operation of one phase machine. This analysis is fulfilled in comparison with regular induction motors with short circuited and wound-rotor windings.
Technical Paper

DC Motor with Salient Poles Rotor and All Coils Placed on the Stator

DC motors are the most controllable electrical machines but more complicated for fabrication, in comparison with induction motors having simplified design but more complicated for control. Regular DC motor contain excitation (field) coil on the stator and armature coil on the rotor. Armature coil connected with external voltage source by a mechanical commutator with brushes. This arrangement complicates fabrication of DC machine, increases its cost, lowered reliability, and demands regular maintenance. Electromagnets inside of the stator increase dimensions of DC motor. In DC motor with salient pole rotor, there are no coils on the rotor, and mechanical commutator with brushes is eliminated, and eliminated all disadvantages connected with this arrangement. In this paper, we consider the new version of DC machine with DC stator excitation in compare with presented earlier. The difference is in using individual coil excitation for each armature coil, placed on the stator.