Refine Your Search

Search Results

Viewing 1 to 9 of 9
Technical Paper

Reduced Warm-Up and Recovery of the Exhaust and Coolant Heat with a Single Loop Turbo Steamer Integrated with the Engine Architecture in a Hybrid Electric Vehicle

The paper considers a novel waste heat recovery (WHR) system integrated with the engine architecture in a hybrid electric vehicle (HEV) platform. The novel WHR system uses water as the working media and recovers both the internal combustion engine coolant and exhaust energy in a single loop. Results of preliminary simulations show a 6% better fuel economy over the cold start UDDS cycle only considering the better fuel usage with the WHR after the quicker warm-up but neglecting the reduced friction losses for the warmer temperatures over the full cycle.
Technical Paper

The Effect of Rear Slant Angle on Vehicle Wakes and Implications for Platoons

Future Generation Intelligent Transport Systems (FGITS) will likely implement solutions to increase traffic density and thus throughput on existing infrastructures. Platooning (e.g. the close coupling of vehicles) may be a prominent feature of this solution, placing an understanding of near wake flows paramount to the FGITS case. However the notion of vehicles spaced at greater intervals is not only more commonly associated with present day conditions; it is furthermore characteristic of mixed-fleet conditions. These are likely to span the significant era between present day and complete FGITS fleets. Thus, far wake flows are similarly relevant. Near and far wake analysis of a variable geometry Ahmed Model (a research form able to replicate structured wakes pertinent to practical vehicle flows) is used to explore relevant generic flow structures.
Technical Paper

Reduced Drag and Adequate Cooling for Passenger Vehicles Using Variable Area Front Air Intakes

Engine cooling systems are usually designed to meet two rare and extreme conditions; driving at maximum speed and driving up a specified gradient at full throttle while towing a trailer of maximum permitted mass. At all other times, the cooling system operates below its maximum capacity with an incurred drag penalty. In this work it is being suggested to design the system using the existing methods and then vary the area of the cooling air intakes to permit the minimum amount of cooling air for adequate engine cooling. A full-size, Australian made Ford Falcon car (a large modern 'family' saloon) was tested at the Monash University Aero-acoustic Wind Tunnel. The cooling air intakes of the vehicle were shielded progressively until fully blocked. Four different possibilities of shielding were investigated with the aim of determining the variation of drag reduction with the shielding method employed.
Technical Paper

Design of Adaptive Airfoil Control for Unmanned Aerial Vehicles using Smart Materials

Smart material is a suitable candidate for adaptive airfoil design as it can be customized to generate a specific response to a combination of inputs. Shape memory alloy (SMA) in particular is lightweight, produces high force and large deflection which makes it a suitable candidate for actuator in the adaptive airfoil design. By attaching SMA wires inside the airfoil, they can be activated to alter the shape of the airfoil. Placement of the actuator is crucial in obtaining the desired change of the airfoil camber. This paper proposed a design for the morphing wing aimed at changing the camber of the airfoil during cruise in order to increase the lift-to-drag ratio. Finite Element Method (FEM) analysis predicted the deformed airfoil geometry when the SMA wires were fully actuated. Numerical results are presented along with issues related to the fabrication of the morphing wing and implementation of the SMA actuator.
Technical Paper

Aerodynamic Performance of Vehicles in Platoons: The Influence of Backlight Angles

Future generation road networks are intended to feature improved throughput and significantly reduced fleet energy consumption. ‘Platooning’ arranges moving vehicles in close longitudinal convoy, and is viewed as a core aspect of such technologies. The aerodynamic performance of platoons potentially allows increased traffic throughput and a useful energy reduction; however the magnitude of this reduction varies significantly with inter-vehicle spacing. For some vehicles in platoons under specific conditions, the resulting aerodynamic performance may actually worsen [2]. This work attempts to deconstruct relationships between two key vehicle geometries and their aerodynamic performance in platoons. A study of homogeneous and heterogeneous platoons using common reference models is presented.
Technical Paper

Use of a Pressure-Based Technique for Evaluating the Aerodynamics of Vehicle Cooling Systems

A pressure-based technique has been developed for the purpose of radiator cooling airflow measurement. The technique was effectively utilised to quantify the local time-averaged air velocity through radiator cores in a small wind tunnel. The pressure difference indicated by the technique was found to be a function of the normal component of the air velocity. This paper describes the development and use of the technique which is compact, robust and non-intrusive. By applying this technique, the airflow distribution across the radiator face has been measured for a complete vehicle in an aerodynamic wind tunnel and in an environmental chamber. Results are compared for the different test environments. The influence of airflow distribution on the Specific Dissipation (a parameter used for evaluating radiator cooling performance) is examined and results for propeller-based methods and pressure-based methods are compared.
Technical Paper

The Effect of Changes in Ambient and Coolant Radiator Inlet Temperatures and Coolant Flowrate on Specific Dissipation

In this paper, a theoretical model for the calculation of Specific Dissipation (SD) was developed. Based on the model, the effect of ambient and coolant radiator inlet temperatures on SD has been predicted. Results indicate that the effect of ambient and coolant inlet temperature variation on SD is small (less than 2%) when ambient temperature varies between 10 and 50°C and coolant radiator inlet temperature between 60 and 120°C. The effect of coolant flowrate on SD is larger if there is a larger flowrate variation. Experimental results indicate that a 1 % variation at 1.0 L/s will cause about ±0.6% SD variation. Therefore the flowrate should be carefully controlled.
Technical Paper

Comparison of On-Road and Wind-Tunnel Tests for Tractor-Trailer Aerodynamic Devices, and Fuel Savings Predictions

Wind tunnels which are large enough for full-scale trucks are rare, and the cost of satisfactorily-detailed models for smaller tunnels is high. The work presented shows the results from the application of a method which provides an over-the-road evaluation of the incremental changes in fuel consumption and drag coefficient produced following the addition of a variety of aerodynamic drag reducing devices to a tractor-trailer truck combination. The devices tested were an aerodynamic sunvisor, a roof-mounted air deflector, cab extenders, cab skirts, a trailer nose fairing, a set of trailer quads (quarter-rounds), and trailer skirts which were mounted on a low-forward-entry tractor and high box-van trailer. The significant differences between the wind tunnel and on-road drag reductions suggest that the effects of on-road wind turbulence can substantially reduce the wind tunnel results even though a 1.5% turbulence intensity level was used in the tunnel experiments.
Technical Paper

Effect of Cross-Winds on Motor Car Engine Cooling

The sensitivity of cross-winds in reducing the engine cooling ability in motor cars is highlighted. Tests on three different motor cars were conducted in the Monash University full-scale wind tunnel at different yaw angles under different wind velocities. The test results show that motor car engine cooling capability decreases with an increase in yaw angles. For a wind velocity of 14 m/s, a 13% decrease in radiator cooling capability was found at a yaw angle of 20° compared to a zero yaw angle. The effect of yaw angles on the engine cooling also depends on the motor car front-end configuration, but this becomes less important with increasing wind velocity. The effect of cross-winds on car engine cooling was also evaluated by on-road engine cooling tests. A convenient experimental method to measure wind velocity and yaw angle relative to a moving car is also described.