Refine Your Search

Search Results

Viewing 1 to 8 of 8
Journal Article

Investigation of Trailer Yaw Motion Control Using Active Front Steer and Differential Brake

2011-04-12
2011-01-0985
This paper presents a control system development for a yaw motion control of a vehicle-trailer combination using the integrated control of active front steer (AFS) and differential brake (DB). A 21 degree of freedom (dof) vehicle-trailer combination model that represents a large SUV and a medium one-axle trailer has been developed for this study. A model reference sliding mode controller (MRSMC) has been developed to generate the desired yaw moment. Based on the understanding of advantages and limitations of AFS and DB, a new integrated control algorithm was proposed. The simulation result shows that integrated control of AFS and DB can restrain the trailer's oscillation effectively and shows less longitudinal speed drop and higher stable margin compared to the DB activated only case while maintaining the yaw stability.
Technical Paper

Development of Active Suspension Control for Combined Handling and Rollover Propensity Enhancement

2007-04-16
2007-01-0826
A conceptual study of a control strategy that improves vehicle handling during cornering maneuvers while improving vehicle roll stability is presented. From the vehicle rollover propensity estimated by vehicle states, the proposed control strategy generates different actuation forces between the front and the rear suspensions to meet its handling and roll stability objectives. Simulation results for different vehicle maneuvers show that the proposed algorithm can effectively balance between enhanced handling and rollover stability.
Technical Paper

Investigation of Active Steering/Wheel Torque Control at the Rollover Limit Maneuver

2004-05-04
2004-01-2097
It is well understood that driver's steering input strongly affects lateral vehicle dynamics and excessive steering command may result in unstable vehicle motion. In a certain driving condition, it is possible for a skilled driver to prevent vehicle rollover with better perceptive capability of judging conditions and responding faster with smooth compensatory actions. This paper investigates the possibility of using active steering and wheel torque control to assist drivers in avoiding vehicle rollovers in emergency situations. The effectiveness of steering control alone and combination of steering/wheel torque control in recovery from unstable vehicle roll condition was demonstrated through simulation of both low and high vehicle speeds.
Technical Paper

Influence of Suspension Properties on Vehicle Roll Stability

2006-02-14
2006-01-1950
Vehicle roll dynamics is strongly influenced by suspension properties such as roll center height, roll steer and roll camber. In this paper, the effects of suspension properties on vehicle roll response has been investigated using a multi-body vehicle dynamics program. A full vehicle model equipped with front MacPherson and rear multilink suspensions has been used for the study. Roll dynamics of the vehicle were evaluated by performing fixed timing fishhook maneuver in the simulation. Variations of vehicle roll response due to changes in the suspension properties were assessed by quantitatively analyzing the vehicle response through simulation. Critical suspension design parameters for vehicle roll dynamics were identified and adjusted to improve roll stability of the vehicle model with passive suspension. Design of Experiments has been used for identifying critical hardpoints affecting the suspension parameters and optimization techniques were employed for parameter optimization.
Technical Paper

14 Degree-of-Freedom Vehicle Model for Roll Dynamics Study

2006-04-03
2006-01-1277
A vehicle model is an important factor in the development of vehicle control systems. Various vehicle models having different complexities, assumptions, and limitations have been developed and applied to many different vehicle control systems. A 14 DOF vehicle model that includes a roll center as well as non-linear effects due to vehicle roll and pitch angles and unsprung mass inertias, is developed. From this model, the limitations and validity of lower order models which employ different assumptions for simplification of dynamic equations are investigated by analyzing their effect on vehicle roll response through simulation. The possible limitation of the 14 DOF model compared to an actual vehicle is also discussed.
Technical Paper

Insightful Representations of Roll Plane Model Stability Limits

2006-04-03
2006-01-1284
Yaw and roll stability limits are derived for three quasi-static roll plane models: rigid vehicle, suspended vehicle, and compliant tire vehicle. A generalized stability equation is identified that fits the stability limits for each model. This generalized stability equation leads to the definition of two new parameters referred to as the generalized superelevation and generalized center of gravity height. These parameters are shown to be physically meaningful. The use of linearizing assumptions is minimized and road superelevation is included, resulting in a more complete equation for each stability limit. Each derived stability limit is then compared and contrasted to the typical representations found in the literature.
Technical Paper

Using μ Feedforward for Vehicle Stability Enhancement

2000-05-01
2000-01-1634
Vehicle stability augmentation has been refined over many years, and currently there are commercial systems that control right/left braking and throttle to create vehicles that remain controlled when road conditions are very poor. These systems typically use yaw rate and lateral acceleration in their control philosophy. The tire/road friction coefficient, μ, has a significant role in vehicle longitudinal and lateral control, and there has been associated efforts to measure or estimate the road surface condition to provide additional information for the stability augmentation system. In this paper, a differential braking control strategy using yaw rate feedback, coupled with μ feedforward is introduced for a vehicle cornering on different μ roads. A nonlinear 4-wheel car model is developed. A desired yaw rate is calculated from the reference model based on the driver steering input.
Technical Paper

Development of Effective Bicycle Model for Wide Ranges of Vehicle Operations

2014-04-01
2014-01-0841
This paper proposes an effective nonlinear bicycle model including longitudinal, lateral, and yaw motions of a vehicle. This bicycle model uses a simplified piece-wise linear tire model and tire force tuning algorithm to produce closely matching vehicle trajectory compared to real vehicle for wide vehicle operation ranges. A simplified piece-wise tire model that well represents nonlinear tire forces was developed. The key parameters of this model can be chosen from measured tire forces. For the effects of dynamic load transfer due to sharp vehicle maneuvers, a tire force tuning algorithm that dynamically adjusts tire forces of the bicycle model based on measured vehicle lateral acceleration is proposed. Responses of the proposed bicycle model have been compared with commercial vehicle dynamics model (CarSim) through simulation in various vehicle maneuvers (ramp steer, sine-with-dwell).
X