Refine Your Search

Search Results

Viewing 1 to 13 of 13
Technical Paper

The Aircraft Tire Wear Problem

1995-05-01
951391
The effects of several different factors on aircraft tire wear performance have been evaluated in a recently completed joint Air Force/NASA/Industry Improved Tire Life Program. This 3-year study was aimed at gaining a better understanding of the tire wear problem and identifying possible approaches to improve aircraft tire life cycle costs. Tire parameters evaluated included tread temperature, loading, inflation pressure, size, tread design, construction, speed and operating mode. Results obtained from nearly 900 test runs with NASA Langley's Instrumented Tire Test Vehicle on different dry pavement surfaces under straight-ahead free rolling, yawed rolling, fixed-slip braking, and cambered rolling are discussed.
Technical Paper

26 X 6.6 Radial-Belted Aircraft Tire Performance

1991-09-01
912157
Preliminary results from testing of 26 X 6.6 radial-belted and bias-ply aircraft tires at NASA Langley's Aircraft Landing Dynamics Facility (ALDF) are reviewed. These tire tests are part of a larger, on going joint NASA/FAA/Industry Surface Traction and Radial Tire (START) Program involving three different tire sizes. The 26 X 6.6 tire size evaluation includes cornering performance tests throughout the aircraft ground operational speed range for both dry and wet runway surfaces. Static test results to define 26 X 6.6 tire vertical stiffness properties are also presented and discussed.
Technical Paper

Runway Drainage Characteristics Related to Tire Friction Performance

1991-09-01
912156
The capability of a runway pavement to rapidly drain water buildup during periods of precipitation is crucial to minimize tire hydroplaning potential and maintain adequate aircraft ground operational safety. Test results from instrumented aircraft, ground friction measuring vehicles, and NASA Langley's Aircraft Landing Dynamics Facility (ALDF) track have been summarized to indicate the adverse effects of pavement wetness conditions on tire friction performance. Water drainage measurements under a range of rainfall rates have been evaluated for several different runway surface treatments including the transversely grooved and longitudinally grinded concrete surfaces at the Space Shuttle Landing Facility (SLF) runway at NASA Kennedy Space Center in Florida. The major parameters influencing drainage rates and extent of flooding/drying conditions are identified.
Technical Paper

A Summary of Recent Aircraft/Ground Vehicle Friction Measurement Tests

1988-10-01
881403
Tests with specially instrumented NASA B-737 and B-727 aircraft together with several different ground friction measuring devices have been conducted for a variety of runway surface types and wetness conditions. This effort is part of the Joint FAA/NASA Aircraft/Ground Vehicle Runway Friction Program aimed at obtaining a better understanding of aircraft ground handling performance under adverse weather conditions and defining relationships between aircraft and ground vehicle tire friction measurements. Aircraft braking performance on dry, wet, snow-, and ice-covered runway conditions is discussed together with ground vehicle friction data obtained under similar runway conditions. For a given contaminated runway surface condition, the relationship between ground vehicles and aircraft friction data is identified. The influence of major test parameters on friction measurements such as speed, test tire characteristics, and surface contaminant type are discussed.
Technical Paper

Friction Evaluation of Concrete Paver Blocks for Airport Pavement Applications

1992-10-01
922013
The development and use of concrete paver blocks is reviewed and some general specifications for application of this type of pavement surface at airport facilities are given. Two different shapes of interlocking concrete paver blocks installed in the track surface at NASA Langley's Aircraft Landing Dynamics Facility (ALDF) are described. Preliminary cornering performance results from testing of 40 x 14 radial-belted and bias-ply aircraft tires are reviewed. These tire tests are part of a larger, ongoing joint NASA/FAA/Industry Surface Traction and Radial Tire (START) Program involving several different tire sizes. Both dry and wet surface conditions were evaluated on the two concrete paver block test surfaces and a conventional, nongrooved Portland cement concrete surface. Future test plans involving evaluation of other concrete paver block designs at the ALDF are indicated.
Technical Paper

NASA Evaluation of Type II Chemical Depositions

1993-09-01
932582
Recent findings from NASA Langley tests to define effects of aircraft Type II chemical deicer depositions on aircraft tire friction performance are summarized. The Aircraft Landing Dynamics Facility (ALDF) is described together with the scope of the tire cornering and braking friction tests conducted up to 160 knots ground speed. Some lower speed 32-96 km/hr (20-60 mph) test run data obtained using an Instrumented Tire Test Vehicle (ITTV) to determine effects of tire bearing pressure and transverse grooving on cornering friction performance are also discussed. Recommendations are made concerning which parameters should be evaluated in future testing.
Technical Paper

Aircraft Nose Gear Shimmy Studies

1993-04-01
931401
An overview of previous studies involving aircraft nose gear shimmy behavior is given together with some test results identifying the influence of different factors inducing shimmy. A NASA Langley test program conducted at the Landing Loads Track (LLT) facility to evaluate shimmy characteristics of an actual Space Shuttle nose gear is described together with some of the test results. Based on results from these various evaluations, recommendations are made concerning nose gear design features, such as corotating wheels, to minimize the occurrence of shimmy.
Technical Paper

Braking, Steering, and Wear Performance of Radial-Belted and Bias-Ply Aircraft Tires

1992-04-01
921036
Preliminary braking, steering, and tread wear performance results from testing of 26 x 6.6 and 40 x 14 radial-belted and bias-ply aircraft tires at NASA Langley's Aircraft Landing Dynamics Facility (ALDF) are reviewed. These tire tests are part of a larger, ongoing joint NASA/FAA/Industry Surface Traction And Radial Tire (START) Program involving these two different tire sizes as well as an H46 x 18-20 tire size which has not yet been evaluated. Both dry and wet surface conditions were evaluated on two different test surfaces - nongrooved Portland cement concrete and specially constructed, hexagonal-shaped concrete paver blocks. Use of paver blocks at airport facilities has been limited to ramp and taxiway areas and the industry needs a tire friction evaluation of this paving material prior to additional airport pavement installations.
Technical Paper

Tire and Runway Surface Research

1986-11-01
861618
The condition of aircraft tires and runway surfaces can be crucial in meeting the stringent demands of aircraft ground operations, particularly under adverse weather conditions. Gaining a better understanding of the factors influencing the tire/pavement interface is the aim of several ongoing NASA Langley research programs which are described in this paper. Results from several studies conducted at the Langley Aircraft Landing Dynamics Facility, tests with instrumented ground vehicles and aircraft, and some recent aircraft accident investigations are summarized to indicate effects of different tire and runway properties. The Joint FAA/NASA Runway Friction Program is described together with some preliminary test findings. The scope of future NASA Langley research directed towards solving aircraft ground operational problems related to the tire/pavement interface is given.
Technical Paper

Current Status of Joint FAA/NASA Runway Friction Program

1989-09-01
892340
Tests with specially instrumented NASA B-737 and FAA B-727 aircraft together with several different ground friction measuring devices have been conducted for a variety of runway surface types and wetness conditions. This effort is part of the Joint FAA/NASA Aircraft/Ground Vehicle Runway Friction Program aimed at obtaining a better understanding of aircraft ground handling performance under adverse weather conditions and defining relationships between aircraft and ground vehicle tire friction measurements. Aircraft braking performance on dry, wet, snow-, and ice-covered runway conditions is discussed together with ground vehicle friction data obtained under similar runway conditions. For the wet, compacted snow-and ice-covered runway conditions, the relationship between ground vehicles and aircraft friction data is identified. The influence of major test parameters on friction measurements such as speed, test tire characteristics, and surface contaminant type are discussed.
Technical Paper

Aircraft and Ground Vehicle Friction Measurements Obtained Under Winter Runway Conditions

1989-04-01
891070
Tests with specially instrumented NASA B-737 and B-727 aircraft together with several different ground friction measuring devices have been conducted for a variety of runway surface types and wetness conditions. This effort is part of the Joint FAA/NASA Aircraft/Ground Vehicle Runway Friction Program aimed at obtaining a better understanding of aircraft ground handling performance under adverse weather conditions and defining relationships between aircraft and ground vehicle tire friction measurements. Aircraft braking performance on dry, wet, snow-, and ice-covered runway conditions is discussed together with ground vehicle friction data obtained under similar runway conditions. For the wet, compacted snow- and ice-covered runway conditions, the relationship between ground vehicles and aircraft friction data is identified. The influence of major test parameters on friction measurements such as speed, test tire characteristics, and surface contaminant type are discussed.
Technical Paper

Aircraft Radial-Belted Tire Evaluation

1990-09-01
901913
An overview is given of the ongoing joint NASA/FAA/Industry Surface Traction And Radial Tire (START) Program being conducted at NASA Langley's Aircraft Landing Dynamics Facility (ALDF). The START Program involves tests using three different tire sizes to evaluate tire rolling resistance, braking, and cornering performance throughout the aircraft ground operational speed range for both dry and wet runway surfaces. Preliminary results from recent 40 x 14 size bias-ply, radial-belted, and H-type aircraft tire tests are discussed. The paper concludes with a summary of the current program status and planned ALDF test schedule.
Technical Paper

Tire/Runway Friction Interface

1990-09-01
901912
Aircraft tire and runway surface conditions can be crucial in meeting aircraft ground operational performance requirements, particularly under adverse weather conditions. Gaining a better understanding of the many factors influencing the tire/runway friction interface is the aim of several ongoing NASA Langley research programs which are described in this paper. Results from studies conducted at the Langley Aircraft Landing Dynamics Facility (ALDF) and tests with instrumented ground vehicles are summarized to indicate effects of different tire and runway properties. Several joint NASA/FAA/Industry programs are described together with current test plans. The scope of future NASA Langley research directed towards solving aircraft ground operational problems related to the tire/runway friction interface is given.
X