Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

Fuel Requirements for HCCI Engine Operation

2003-05-19
2003-01-1813
Researchers at Southwest Research Institute (SwRI) have been working for the past several years on the fundamental and practical aspects of homogeneous charge compression ignition (HCCI) operation of reciprocating engines. Much of the work has focused on the use of diesel fuel. The work at SwRI has, however, demonstrated that there are fundamental limitations on the use of current diesel fuels in HCCI engines. The results of engine and constant volume combustion bomb experiments are presented and discussed. The engine experiments were used to identify important fuel properties that must be included in a fuel specification for HCCI fuels. The primary properties relate to the distillation characteristics and the ignition characteristics. The engine test provided preliminary guidance on the distillation requirements and an indication of the important ignition requirements.
Technical Paper

Diesel Fuel Ignition Quality as Determined in the Ignition Quality Tester (IQT) - Part II

1997-05-01
971636
A combustion-based analytical method, initially developed by the Southwest Research Institute (SwRI) and referred to as the Constant Volume Combustion Apparatus (CVCA), has been further researched/developed by an SwRI licensee (Advanced Engine Technology Ltd.). This R&D has resulted in a diesel fuel Ignition Quality Tester (IQT) that permits rapid and precise determination of the ignition quality of middle distillate and alternative fuels. Its features, such as low fuel volume requirement, complete test automation, and self-diagnosis, make it highly suitable for commercial oil industry and research applications. A preliminary investigation, reported in SAE paper 961182, has shown that the IQT results are highly correlated to the ASTM D-613 cetane number (CN). The objective of this paper is to report on efforts to further refine the original CN model and report on improvements to the IQT fuel injection system.
Technical Paper

Cetane Effect on Diesel Ignition Delay Times Measured in a Constant Volume Combustion Apparatus

1995-10-01
952352
The key feature of diesel fuel ignition quality is ignition delay time. In the American Society for Testing and Materials standard test for cetane number measurement, (ASTM D 613) the ignition delay time is held constant while the compression ratio is varied until ignition occurs at the set time. On the other hand, commercial diesel engines have set compression ratios and therefore, the ignition delay time varies with the cetane number of the fuel. The shorter this delay time, the wider the time window over which the combustion processes are spread. This leads to a more controlled heat release rate and pressure rise, resulting in prevention of diesel knock and in lowering of emissions. High cetane fuels exhibit short ignition delay times. The Constant Volume Combustion Apparatus (CVCA) precisely measures the ignition delay time of fuels. This study investigates the CVCA as a supplementary tool for characterization of diesel fuel ignition quality under a variety of conditions.
Technical Paper

Combustion and Emissions Characteristics of Minimally Processed Methanol in a Diesel Engine Without Ignition Assist

1994-03-01
940326
Mixtures of methanol, water and heavier alcohols, simulating “raw’ methanol at various levels of processing, were tested in a constant volume combustion apparatus (CVCA) and in a single-cylinder, direct-injection diesel engine. The ignition characteristics determined in the CVCA indicated that the heavier alcohols have beneficial effects on the auto-ignition quality of the fuels, as compared to pure methanol. Water, at up up to 10 percent by volume, has little effect on the ignition quality. In all cases, however, the cetane numbers of the alcohol mixtures were very low. The same fuels were tested in a single cylinder engine, set-up in a configuration similar to current two-valve DI engines, except that the compression ratio was increased to 19:1. Pure methanol and five different blends of alcohols and water were tested in the engine at five different speed-load conditions.
Technical Paper

Relationships Between Fuel Properties and Composition and Diesel Engine Combustion Performance and Emissions

1994-03-01
941018
Five different diesel fuel feedstocks were processed to two levels of aromatic (0.05 sulfur, and then 10 percent) content. These materials were distilled into 6 to 8 narrow boiling range fractions that were each characterized in terms of the properties and composition. The fractions were also tested at five different speed load conditions in a single cylinder engine where high speed combustion data and emissions measurements were obtained. Linear regression analysis was used to develop relationships between the properties and composition, and the combustion and emissions characteristics as determined in the engine. The results are presented in the form of the regression equations and discussed in terms of the relative importance of the various properties in controlling the combustion and emissions characteristics. The results of these analysis confirm the importance of aromatic content on the cetane number, the smoke and the NOx emissions.
Technical Paper

Diesel Fuel Ignition Quality as Determined in the Ignition Quality Tester (IQT)

1996-05-01
961182
A combustion-based analytical method, initially developed by the Southwest Research Institute (SwRI) referred to as the Constant Volume Combustion Apparatus (CVCA), has been further researched/developed by an SwRI licensee (Advanced Engine Technology Ltd.) as an Ignition Quality Tester (IQT) for laboratories and refineries. The IQT software/hardware system permits rapid and precise determination of ignition quality for middle distillate fuels. Its features, such as low fuel volume requirement, complete test automation, and self-diagnosis, make it highly suitable for commercial oil industry and research applications. Operating and test conditions were examined in the context of providing a high correlation with cetane number (CN), as determined by the ASTM D-613 method. Preliminary investigation indicates that the IQT results are highly repeatable (± 0.30 CN), providing a high sensitivity to CN variation over the 33 to 58 CN range.
Technical Paper

Homogeneous Charge Compression Ignition of Diesel Fuel

1996-05-01
961160
A single-cylinder, direct-injection diesel engine was modified to operate on compression ignition of homogenous mixtures of diesel fuel and air. Previous work has indicated that extremely low emissions and high efficiencies are possible if ignition of homogeneous fuel-air mixtures is accomplished. The limitations of this approach were reported to be misfire and knock. These same observations were verified in the current work. The variables examined in this study included air-fuel ratio, compression ratio, fresh intake air temperature, exhaust gas recirculation rate, and intake mixture temperatures. The results suggested that controlled homogeneous charge compression ignition (HCCI) is possible. Compression ratio, EGR rate, and air fuel ratio are the practical controlling factors in achieving satisfactory operation. It was found that satisfactory power settings are possible with high EGR rates and stoichiometric fuel-air mixtures.
Technical Paper

Coal-Water-Slurry Autoignition in a High-Speed Detroit Diesel Engine

1994-10-01
941907
Autoignition of coal-water-slurry (CWS) fuel in a two-stroke engine operating at 1900 RPM has been achieved. A Pump-Line-Nozzle (PLN) injection system, delivering 400mm3/injection of CWS, was installed in one modified cylinder of a Detroit Diesel Corporation (DI)C) 8V-149TI engine, while the other seven cylinders remained configured for diesel fuel. Coal Combustion was sustained by maintaining high gas and surface temperatures with a combination of hot residual gases, warm inlet air admission, ceramic insulated components and increased compression ratio. The coal-fueled cylinder generated 85kW indicated power (80 percent of rated power), and lower NOx levels with a combustion efficiency of 99.2 percent.
Technical Paper

Injection Pressure and Intake Air Density Effects on Ignition and Combustion in a 4-Valve Diesel Engine

1994-10-01
941919
Diesel engine optimization for low emissions and high efficiency involves the use of very high injection pressures. It was generally thought that increased injection pressures lead to improved fuel air mixing due to increased atomization in the fuel jet. Injection experiments in a high-pressure, high-temperature flow reactor indicated, however, that high injection pressures, in excess of 150 MPa, leads to greatly increased penetration rates and significant wall impingement. An endoscope system was used to obtain movies of combustion in a modern, 4-valve, heavy-duty diesel engine. Movies were obtained at different speeds, loads, injection pressures, and intake air pressures. The movies indicated that high injection pressure, coupled with high intake air density leads to very short ignition delay times, ignition close to the nozzle, and burning of the plumes as they traverse the combustion chamber.
Technical Paper

Nox Control in Heavy-Duty Diesel Engines - What is the Limit?

1998-02-23
980174
Methods to reduce direct injected diesel engine emissions in the combustion chamber will be discussed in this paper. The following NOx emission reduction technologies will be reviewed: charge air chilling, water injection, and exhaust gas recirculation (EGR). Emphasis will be placed on the development of an EGR system and the effect of EGR on NOx and particulates. The lower limit of NOx that can be obtained using conventional diesel engine combustion will be discussed. Further reductions in NOx may require changing the combustion process from a diffusion flame to a homogeneous charge combustion system.
Technical Paper

Cetane Numbers of Fatty Compounds:Influence of Compound Structure and of Various Potential Cetane Improvers

1997-05-01
971681
Biodiesel is a mixture of esters (usually methyl esters) of fatty acids found in the triglycerides of vegetable oils. The different fatty compounds comprising biodiesel possess different ignition properties. To investigate and potentially improve these properties, the cetane numbers of various fatty acids and esters were determined in a Constant Volume Combustion Apparatus. The cetane numbers range from 20.4 for linolenic acid to 80.1 for butyl stearate. The cetane numbers depend on the number of CH2 groups as well as the number of double bonds and other factors. Various oxygenated compounds were studied for their potential of improving the cetane numbers of fatty compounds. Several potential cetane improvers with ignition delay properties giving calculated cetane numbers over 100 were identified. The effect of these cetane improvers depended on their concentration and also on the fatty material investigated.
Technical Paper

Dual Fuel Injection Nozzle for Methanol Fueled Compression Ignition Engine Operation

1991-10-01
912357
The objective of the work reported in this paper was to develop and demonstrate an injection nozzle which can be used to inject both diesel fuel and methanol in to a direct injection diesel engine. The constraints on the nozzle were that it must provide acceptable fuel metering and atomization for the diesel fuel so that the engine can be operated at rated load on diesel fuel alone, or operate at full load with the diesel fuel as a pilot for the methanol. An additional constraint was that the nozzle design was to be easily adaptable to the existing injection nozzle so that engine head modifications are not required. The initial design was evaluated in a constant volume test chamber in which the pressure was varied from atmospheric to engine compression pressures.
Technical Paper

Cetane Numbers of Fatty Esters, Fatty Alcohols and Triglycerides Determined in a Constant Volume Combustion Bomb

1990-02-01
900343
During the 1980's, vegetable oils, microemulsions containing fatty alcohols as surfactants, and fatty esters have been extensively investigaed as alternative fuels to #2 diesel fuel (DF-2) used in farm tractors. Despite the importance of vegetable oils (mainly triglycerides) and fatty derivatives to the alternative fuel program, cetane numbers for pure triglycerides and many fatty derivatives were not reported. In the current study, estimated cetane numbers of these materials have been determined by use of a constant volume combustion bomb. Prior research has shown that this equipment can produce cetane numbers that correlate satisfactorily with engine cetane numbers as determied by ASTM D 613. The influence of chemical structure on ignition delay and cetane number was investigated. Evidence is presented that shows the current cetane number scale is not always suitable for these fatty materials. Suggestions are made as to what might be done to remedy this problem.
Technical Paper

Engine and Constant Volume Bomb Studies of Diesel ignition and Combustion

1988-10-01
881626
Changing fuel quality, increasingly stringent exhaust emission standards, demands for higher efficiency, and the trend towards higher specific output, all contribute to the need for a better understanding of the ignition process in diesel engines. In addition to the impact on the combustion process and the resulting performance and emissions, the ignition process controls the startability of the engine, which, in turn, governs the required compressions ratio and several of the other engine design parameters. The importance of the ignition process is reflected in the fact that the only combustion property that is specified for diesel fuel is the ignition delay time as indicated by the cetane number. The objective of the work described in this paper was to determine the relationship between the ignition process as it occurs in an actual engine, to ignition in a constant volume combustion bomb.
Technical Paper

Effects of Fuel Properties and Composition on the Temperature Dependent Autoignition of Diesel Fuel Fractions

1992-10-01
922229
The work described in this paper includes the preparation and combustion testing of fuels that consist of fractions of several different distillate materials that represent different feed stocks and different processing technology. Each of the fuels have been tested in a constant volume combustion apparatus to determine the relationship between ignition delay time, temperature and cetane number. These relationships are discussed in terms of the composition and properties of each fraction, and the processing that each of the feedstocks were exposed to.
Technical Paper

Diesel Fuel Composition Effects on Ignition and Emissions

1993-10-01
932735
Four broad boiling range materials, representative of current and future feedstocks for diesel fuel, were processed to two levels of sulfur and aromatic content. These materials were then distilled into six to eight fractions each. The resulting 63 fuels were then characterized physically and chemically, and tested in both a constant volume combustion apparatus and a single cylinder diesel engine. The data obtained from these analyses and tests have been analyzed graphically and statistically. The results of the initial statistical analysis, reported here, indicate that the ignition quality of a fuel is dependent not only on the overall aromatic content, but also on the composition of the material formed during hydroprocessing of the aromatics. The NOx emissions, however, are related mainly to the aromatic content of the fuel, and the structure of the aromatic material.
Technical Paper

Identification of Chemical Changes Occurring During the Transient Injection of Selected Vegetable Oils

1993-03-01
930933
Four different vegetable oils, degummed soybean, once refined cottonseed, peanut and sunflower oils, were injected into a high-pressure, high-temperature environment of nitrogen. The environment was controlled to resemble, thermodynamically, conditions present in a diesel engine at the time of fuel injection. Samples were removed from the sprays of these oils while they were being injected. A sonic, water-cooled probe and a cold trap were used to collect the samples. Chemical analyses of the samples indicated that significant chemical changes occur in the oils during the injection process. The major change is the formation of low-molecular weight compounds from the C18:2 and C18:3 fatty acids.
Technical Paper

Understanding the mechanism of Cylinder Bore and Ring Wear in Methanol Fueled SI Engines

1986-10-01
861591
One of the major problems created by the use of methanol fuels in SI engines is the high cylinder bore and ring wear rates observed during operation at low engine temperatures. The objective of the work reported in this paper was to identify the processes controlling the corrosion/wear mechanism in methanol-fueled, spark-ignition engines. Basically, three different types of experiments were performed during this project. The experiments consisted of: 1. Combustion experiments designed to identify the combustion products of methanol at various locations within a confined methanol flame; 2. Exposure studies designed to define the specific role of each of the combustion products on the corrosion mechanism; 3. Lubricant screening experiments designed to identify the mode of penetration of the oil film, and the location, in the microscale, of the surface attack. Performic acid was identified as the corrosive agent.
Technical Paper

Diesel Fuel Ignition Quality as Determined in a Variable Compression Ratio, Direct-Injection Engine

1987-02-01
870585
A single-cylinder, variable-compression ratio, direct-injection diesel engine was designed and constructed to study the ignition quality of seventeen different test fuels, ranging from the primary reference fuels to a vegetable oil. The objective of the work was to compare the ignition quality rating of the fuels using the standard cetane rating technique to ratings obtained in the test engine. The ignition delay times have been measured as functions of the engine speed, load, and compression ratio. As in the standard cetane rating technique, injection timing was adjusted so that combustion started at top dead center. This was accomplished by adjusting the injection timing as the speed, load, and compression ratio were varied. The resulting data is plotted as the ignition delay times versus compression ratio at the various speed-load conditions.
Technical Paper

Diesel Fuel Ignition Quality as Determined in a Constant Volume Combustion Bomb

1987-02-01
870586
The ignition delay times of forty-two different fuels were measured in a constant volume combustion bomb. The measurements were performed at three different initial air temperatures using fuels ranging from the primary reference fuels for cetane rating to complex mixtures of coal-derived liquids. The ignition delay times were examined in terms of the classical definitions of the physical and chemical delay times. The previously used definitions were found to be inadequate, and new definitions have been proposed. The total ignition delay times were studied in the context of providing a means for rating the ignition quality of the fuels. Fuel ignition quality rating schemes are discussed, including one based on the current cetane number scale as well as one based on a new scale which includes a measure of the sensitivity of the various fuels to the air temperature.
X