Refine Your Search


Search Results

Technical Paper

The Effects of Fuel Properties on Emissions from a 2.5gm NOx Heavy-Duty Diesel Engine

The engine selected for this work was a Caterpillar 3176 engine. Engine exhaust emissions, performance, and heat release rates were measured as functions of engine configuration, engine speed and load. Two engine configurations were used, a standard 1994 design and a 1994 configuration with EGR designed to achieve a NOx emissions level of 2.5 gm/hp-hr. Measurements were performed at 7 different steady-state, speed-load conditions on thirteen different test fuels. The fuel matrix was statistically designed to independently examine the effects of the targeted fuel properties. Cetane number was varied from 40 to 55, using both natural cetane number and cetane percent improver additives. Aromatic content ranged from 10 to 30 percent in two different forms, one in which the aromatics were predominantly mono-aromatic species and the other, where a significant fraction of the aromatics were either di- or tri-aromatics.
Technical Paper

Relationships Between Fuel Properties and Composition and Diesel Engine Combustion Performance and Emissions

Five different diesel fuel feedstocks were processed to two levels of aromatic (0.05 sulfur, and then 10 percent) content. These materials were distilled into 6 to 8 narrow boiling range fractions that were each characterized in terms of the properties and composition. The fractions were also tested at five different speed load conditions in a single cylinder engine where high speed combustion data and emissions measurements were obtained. Linear regression analysis was used to develop relationships between the properties and composition, and the combustion and emissions characteristics as determined in the engine. The results are presented in the form of the regression equations and discussed in terms of the relative importance of the various properties in controlling the combustion and emissions characteristics. The results of these analysis confirm the importance of aromatic content on the cetane number, the smoke and the NOx emissions.
Technical Paper

Homogeneous Charge Compression Ignition of Diesel Fuel

A single-cylinder, direct-injection diesel engine was modified to operate on compression ignition of homogenous mixtures of diesel fuel and air. Previous work has indicated that extremely low emissions and high efficiencies are possible if ignition of homogeneous fuel-air mixtures is accomplished. The limitations of this approach were reported to be misfire and knock. These same observations were verified in the current work. The variables examined in this study included air-fuel ratio, compression ratio, fresh intake air temperature, exhaust gas recirculation rate, and intake mixture temperatures. The results suggested that controlled homogeneous charge compression ignition (HCCI) is possible. Compression ratio, EGR rate, and air fuel ratio are the practical controlling factors in achieving satisfactory operation. It was found that satisfactory power settings are possible with high EGR rates and stoichiometric fuel-air mixtures.
Technical Paper

Investigation of Diesel Spray Structure and Spray/Wall Interactions in a Constant Volume Pressure Vessel

High-speed movie films, and laser-diffraction drop sizing were used to evaluate the structure, penetration rate, cone angle, and drop size distribution of diesel sprays in a constant volume pressure vessel. As further means of evaluating the data, comparisons are made between the film measurements, and calculations from a dense gas jet model. In addition to the high-speed film data that describes the overall structure of the spray as a function of time, a laser diffraction instrument was used to measure drop size distribution through a cross-section of the spray. In terms of the growth of the total spray volume (a rough measure of the amount of air entrained in the spray), spray impingement causes an initial delay, but generally the same overall growth rate as an equivalent unimpeded spray. Agreement between measurements and calculations is excellent for a diesel spray with a 0.15 mm D orifice and relatively high injection pressures.
Technical Paper

Injection Pressure and Intake Air Density Effects on Ignition and Combustion in a 4-Valve Diesel Engine

Diesel engine optimization for low emissions and high efficiency involves the use of very high injection pressures. It was generally thought that increased injection pressures lead to improved fuel air mixing due to increased atomization in the fuel jet. Injection experiments in a high-pressure, high-temperature flow reactor indicated, however, that high injection pressures, in excess of 150 MPa, leads to greatly increased penetration rates and significant wall impingement. An endoscope system was used to obtain movies of combustion in a modern, 4-valve, heavy-duty diesel engine. Movies were obtained at different speeds, loads, injection pressures, and intake air pressures. The movies indicated that high injection pressure, coupled with high intake air density leads to very short ignition delay times, ignition close to the nozzle, and burning of the plumes as they traverse the combustion chamber.
Technical Paper

Nox Control in Heavy-Duty Diesel Engines - What is the Limit?

Methods to reduce direct injected diesel engine emissions in the combustion chamber will be discussed in this paper. The following NOx emission reduction technologies will be reviewed: charge air chilling, water injection, and exhaust gas recirculation (EGR). Emphasis will be placed on the development of an EGR system and the effect of EGR on NOx and particulates. The lower limit of NOx that can be obtained using conventional diesel engine combustion will be discussed. Further reductions in NOx may require changing the combustion process from a diffusion flame to a homogeneous charge combustion system.
Technical Paper

Cetane Numbers of Fatty Compounds:Influence of Compound Structure and of Various Potential Cetane Improvers

Biodiesel is a mixture of esters (usually methyl esters) of fatty acids found in the triglycerides of vegetable oils. The different fatty compounds comprising biodiesel possess different ignition properties. To investigate and potentially improve these properties, the cetane numbers of various fatty acids and esters were determined in a Constant Volume Combustion Apparatus. The cetane numbers range from 20.4 for linolenic acid to 80.1 for butyl stearate. The cetane numbers depend on the number of CH2 groups as well as the number of double bonds and other factors. Various oxygenated compounds were studied for their potential of improving the cetane numbers of fatty compounds. Several potential cetane improvers with ignition delay properties giving calculated cetane numbers over 100 were identified. The effect of these cetane improvers depended on their concentration and also on the fatty material investigated.
Technical Paper

Effects of Fuel Properties on Diesel Spray Characteristics

Several diesel injection systems were selected for evaluating the effects of fuel properties on diesel spray characteristics. Fuel properties that were examined were viscosity and specific gravity. The selected injection systems were operated on nine test fuels covering a broad range of viscosity and specific gravity. High-speed movies were taken of the fuels being injected into a high-pressure environment. Penetration and cone angle data were reduced from the movies and used as a basis for fuel-to-fuel comparisons. In addition, drop size distribution data were obtained for one injection system operating on four fuels with different viscosities. Fuel viscosity was found to have an effect on spray tip penetration. For a pintle-type nozzle as fuel viscosity increased, the tip penetration rate decreased. Tip penetration rate from a pressure time injection system was proportional to the fuel viscosity, in that as viscosity increased, tip penetration increased.
Technical Paper

Comparison of Predicted and Measured Diesel Exhaust Emission Levels During Transient Operation

A technique is verified for mapping the exhaust emission levels of a diesel engine during transient operation. Particulate matter, oxides of nitrogen, hydrocarbons, and carbon monoxide emissions were sampled for discrete segments of various transient cycles. Each cycle consisted of four distinct segments. The discrete segments are described by average engine conditions, rate of change variables, and segment length. Regression analysis was used to develop equations relating the emission levels during each segment to the engine parameters. The regression equations were then used to obtain estimates of composite emission levels of several complex transient cycles that were subsequently tested. These cycles included the EPA heavy-duty transient cycle and two simulated heavy-duty cycles developed for underground mine vehicles. Comparison of the predicted and measured cycle emissions are made for the EPA heavy duty cycle and the simulated mine cycles.
Technical Paper

Engine and Constant Volume Bomb Studies of Diesel ignition and Combustion

Changing fuel quality, increasingly stringent exhaust emission standards, demands for higher efficiency, and the trend towards higher specific output, all contribute to the need for a better understanding of the ignition process in diesel engines. In addition to the impact on the combustion process and the resulting performance and emissions, the ignition process controls the startability of the engine, which, in turn, governs the required compressions ratio and several of the other engine design parameters. The importance of the ignition process is reflected in the fact that the only combustion property that is specified for diesel fuel is the ignition delay time as indicated by the cetane number. The objective of the work described in this paper was to determine the relationship between the ignition process as it occurs in an actual engine, to ignition in a constant volume combustion bomb.
Technical Paper

Diesel Fuel Composition Effects on Ignition and Emissions

Four broad boiling range materials, representative of current and future feedstocks for diesel fuel, were processed to two levels of sulfur and aromatic content. These materials were then distilled into six to eight fractions each. The resulting 63 fuels were then characterized physically and chemically, and tested in both a constant volume combustion apparatus and a single cylinder diesel engine. The data obtained from these analyses and tests have been analyzed graphically and statistically. The results of the initial statistical analysis, reported here, indicate that the ignition quality of a fuel is dependent not only on the overall aromatic content, but also on the composition of the material formed during hydroprocessing of the aromatics. The NOx emissions, however, are related mainly to the aromatic content of the fuel, and the structure of the aromatic material.
Technical Paper

Effects of Different Injector Hole Shapes on Diesel Sprays

Twelve different hole shapes for diesel injector tips were characterized with DF-2 diesel fuel for spray cone angle over a range of injection pressures from 21 MPa (3 kpsi) to 69 MPa (10 kpsi). A baseline and two of the most radical designs were also tested for drop-size distribution and liquid volume fraction (liquid fuel-air ratio) over a range of pressures from 41 MPa (6 kpsi) to 103 MPa (15 kpsi). All hole shapes were circular in cross-section with minimum diameters of 0.4 mm (0.016 in.), and included converging and diverging hole shapes. Overall hole lengths were constant at 2.5 mm (0.098 in.), for an L/d of 6.2. However, the effective L/d may have been less for some of the convergent and divergent shapes.
Technical Paper

Emissions Measurements in a Steady Combusting Spray Simulating the Diesel Combustion Chamber

In-cylinder control of particulate emissions in a diesel engine depends on careful control and understanding of the fuel injection and air/fuel mixing process. It is extremely difficult to measure physical parameters of the injection and mixing process in an operating engine, but it is possible to simulate some diesel combustion chamber conditions in a steady flow configuration whose characteristics can be more easily probed. This program created a steady flow environment in which air-flow and injection sprays were characterized under non-combusting conditions, and emissions measurements were made under combusting conditions. A limited test matrix was completed in which the following observations were made. Grid-generated air turbulence decreased particulates, CO, and unburned hydrocarbons, while CO2 and NOx levels were increased. The turbulence accelerated combustion, resulting in more complete combustion and higher temperatures at the measurement location.
Technical Paper

Control of Diesel Exhaust Emissions in Underground Coal Mines - Single-Cylinder Engine Optimization for Water-in-Fuel Miscroemulsions

The increased use of diesel-powered equipment in underground mines has prompted interest in reducing their exhaust pollutants. Control of particulate emissions without substantial penalties in other emissions or fuel consumption is necessary. This paper describes test results on a prechaaber, naturally-aspirated, four-cycle diesel engine in which two different concentrations of water-in-fuel emulsions were run. The independent variables comprising the test matrix were fuel, speed, load, injection timing, injection rate, and compression ratio. The dependent variables of the experiment included particulate and gaseous emissions and engine thermal efficiency. Regression analysis was performed on the data to determine how particulate emissions were affected by fuel and engine parameters. Results of this analysis indicated that substantial reductions in particulate emissions could be obtained by utilizing water-in-fuel emulsions.
Technical Paper

Control of Diesel Exhaust Emissions in Underground Coal Mines - Steady-State and Transient Engine Tests with a Five Percent Water-in-Fuel Microemulsion

This paper is the fourth in a series describing work sponsored by the Bureau of Mines to reduce diesel particulate and gaseous emissions through fuel modification. A stabilized water microemulsion fuel developed in previous work was tested in a Caterpillar 3304 NA four-cylinder engine with compression ratio and injection timing and rate optimized for this fuel to demonstrate the emissions reductions achieved. It was tested in both standard and optimum configurations with both baseline DF-2 and optimized microemulsion fuels. Gaseous and particulate data are presented from steady-state tests using a computer-operated mini-dilution tunnel and from transient tests using a total exhaust dilution tunnel. The optimized engine-fuel combination was effective in reducing particulates and oxides of nitrogen in steady-state tests. However, the standard engine-fuel combination provided the lowest particulate and NOx emissions in transient tests.
Technical Paper

The Laminar Burning Velocity of Isooctane, N-Heptane, Methanol, Methane, and Propane at Elevated Temperature and Pressures in the Presence of a Diluent

A constant volume bomb was used to determine basic combustion characteristics of isooctane, n-heptane, methanol, propane and methane. Results show that the laminar flame velocity of a quiescent homogeneous air/fuel mixture can be derived from pressure-time data in the bomb. The effects of pressure, temperature, and charge dilution on flame velocity and ignition are presented. A thermo-chemical kinetic model accurately predicted concentrations of nitric oxide during combustion and in the burned gas.
Technical Paper

The Effects of Fuel Properties and Composition on Diesel Engine Exhaust Emissions - A Review

Due to the cost and mobility advantages of diesel-powered mine vehicles over electric vehicles, it is anticipated that the diesel engine will become more widely used in underground mines in this country. Concern has arisen, however, over the impact of diesel exhaust emissions on the air quality in the underground mine environment. A literature search has been conducted to identify known effects of fuel properties on the reduction of diesel exhaust emissions. Reductions can be obtained by optimizing fuel properties and by considering alternative fuels to standard diesel fuel. However, the data base is relatively small and the results highly dependent on engine type and operating conditions. Engine studies on a typical mine diesel are necessary to draw quantitative conclusions regarding the reduction of emissions, especially particulates and NO2 which have not been generally addressed in previous studies.
Technical Paper

The Effects of Discrete Transients in Speed and Load on Diesel Engine Exhaust Emissions

The responses of diesel engine exhaust emissions to transients in speed and torque are examined. Particulate matter, hydrocarbons, carbon monoxide, and oxides of nitrogen were sampled for discrete segments of various transient cycles. Each cycle consisted of four distinct segments, two of which were steady state, in general, each segment was defined by choosing the beginning and ending values for speed and torque, and the segment length. Using regression techniques, prediction equations were obtained for each emission. The equations relate the emission levels to engine parameters, which describe each segment. Speed and torque were found to be important variables as were the rates at which speed and torque changed. Transients in torque were found to increase particulate and carbon monoxide emissions.
Technical Paper

The Effects of Engine and Fuel Parameters on Diesel Exhaust Emissions during Discrete Transients in Speed and Load

Diesel exhaust emission levels have been measured during discrete transients in speed and load, and with changes made to the engine and fuel. Particulate, oxides of nitrogen, unburned hydrocarbon, and carbon monoxide measurements were made for two fuels, DF2 and 5 percent water-in-fuel microemulsion, for both a standard Caterpillar 3304 and a modified 3304 engine. Engine modifications included increasing compression ratio and retarding injection timing. This paper examines the effects of the water addition and engine modification on the steady-state and transient emission levels. In general, the addition of water decreased the particulate and oxides of nitrogen emission levels for the standard engine, but increased the levels of hydrocarbons and carbon monoxide. For the modified engine, the water addition resulted in a slight decrease in oxides of nitrogen and particulate matter at high speed and load conditions.
Technical Paper

Diesel Engine Injection and Combustion of Slurries of Coal, Charcoal, and Coke in Diesel Fuel

Slurry fuels of various forms of solids in diesel fuel were developed and evaluated for their relative potential as fuel for diesel engines. Thirteen test fuels with different solids concentrations were formulated using eight different materials. The injection and atomization characteristics (transient diesel sprays) of the test fuels were examined in a spray bomb in which a nitrogen atmosphere was maintained at high pressure and temperature, 4.2 MPa and 480°C, respectively. The diagnostics of the sprays included high-speed movies and high-resolution still photographs. The slurries were also tested in a single-cylinder CLR engine in both direct-injection and prechamber configurations. The data included the normal performance parameters as well as heat release rates and emissions. In most cases, the slurries performed very much like the baseline fuel. The combustion data indicated that a large fraction (90 percent or more) of the solids were burning in the engine.