Refine Your Search

Topic

Search Results

Standard

SAE J3076-1 Clock Extension Peripheral Interface (CXPI)

2017-02-10
WIP
J3076-1
This document is a recommended practice and intended to provide a minimum set of implementation requirements of the Clock Extension Peripheral Interface (CXPI) protocol. This document specifies the parameter requirements of the CXPI protocol. The CXPI protocol provides some selected features of the Controller Area Network (CAN) protocol implemented on a UART-based data link for mainly HMI (Human Machine Interface) of road vehicles electric systems.
Standard

Communication Transceivers Qualification Requirements - Ethernet

2017-12-04
WIP
J2962/3
This document covers the requirements for Ethernet PHY qualification. Requirements stated in this document will provide a minimum standard level of performance for the Ethernet PHY block in the IC to which all compatible Automotive PHYs shall be designed. No other features in the IC are tested or qualified as part of this recommended practice. This will assure robust serial data communication among all connected devices regardless of supplier.
Standard

Class A Multiplexing Architecture Strategies

2006-09-12
CURRENT
J2057/4_200609
The subject matter contained within this SAE Information Report is set forth by the Class A Task Force of the Vehicle Network for Multiplexing and Data Communications (Multiplex) Committee as information the network system designer should consider. The Task Force realizes that the information contained in this report may be somewhat controversial and a consensus throughout the industry does not exist at this time. The Task Force also intends that the analysis set forth in this document is for sharing information and encouraging debate on the benefits of utilizing a multiple network architecture.
Standard

Class A Multiplexing Sensors

2001-08-30
HISTORICAL
J2057/3_200108
The Class A Task Force of the Vehicle Network for Multiplexing and Data Communications Subcommittee is providing information on sensors that could be applicable for a Class A Bus application. Sensors are generally defined as any device that inputs information onto the bus. Sensors can be an input controlled by the operator or an input that provides the feedback or status of a monitored vehicle function. Although there is a list of sensors provided, this list is not all-inclusive. This SAE Information Report is intended to help the network system engineer and is meant to stimulate the design thought process.
Standard

Class A Multiplexing Sensors

2006-09-12
CURRENT
J2057/3_200609
The Class A Task Force of the Vehicle Network for Multiplexing and Data Communications Subcommittee is providing information on sensors that could be applicable for a Class A Bus application. Sensors are generally defined as any device that inputs information onto the bus. Sensors can be an input controlled by the operator or an input that provides the feedback or status of a monitored vehicle function. Although there is a list of sensors provided, this list is not all-inclusive. This SAE Information Report is intended to help the network system engineer and is meant to stimulate the design thought process.
Standard

Class A Application/Definition

1991-06-01
HISTORICAL
J2057/1_199106
This SAE Information Report will explain the difference between Class A, B, and C networks and clarify through examples the differences in applications. Special attention will be given to a listing of functions that could be attached to a Class A communications network.
Standard

Class B Data Communication Network Messages - Part 3 - Frame IDs for Single-Byte Forms of Headers

2011-05-02
CURRENT
J2178/3_201105
This SAE Recommended Practice defines the information contained in the header and data fields of non-diagnostic messages for automotive serial communications based on SAE J1850 Class B networks. This document describes and specifies the header fields, data fields, field sizes, scaling, representations, and data positions used within messages. The general structure of a SAE J1850 message frame without in-frame response is shown in Figure 1. The structure of a SAE J1850 message with in-frame response is shown in Figure 2. Figures 1 and 2 also show the scope of frame fields defined by this document for non-diagnostic messages. Refer to SAE J1979 for specifications of emissions related diagnostic message header and data fields. Refer to SAE J2190 for the definition of other diagnostic data fields. The description of the network interface hardware, basic protocol definition, electrical specifications, and the CRC byte is given in SAE J1850.
Standard

Class B Data Communication Network Messages - Message Definitions for Three Byte Headers

1999-03-11
HISTORICAL
J2178/4_199903
This SAE Recommended Practice defines the information contained in the header and data fields of non-diagnostic messages for automotive serial communications based on SAE J1850 Class B networks. This document describes and specifies the header fields, data fields, field sizes, scaling, representations, and data positions used within messages. The general structure of a SAE J1850 message frame without in-frame response is shown in Figure 1. The structure of a SAE J1850 message with in-frame response is shown in Figure 2. Figures 1 and 2 also show the scope of frame fields defined by this document for non-diagnostic messages. Refer to SAE J1979 for specifications of emissions related diagnostic message header and data fields. Refer to SAE J2190 for the definition of other diagnostic data fields. The description of the network interface hardware, basic protocol definition, the electrical specifications, and the CRC byte are given in SAE J1850.
Standard

Class B Data Communication Network Messages - Part 2: Data Parameter Definitions

1999-03-11
HISTORICAL
J2178/2_199903
This SAE Recommended Practice defines the information contained in the header and data fields of non-diagnostic messages for automotive serial communications based on SAE J1850 Class B networks. This document describes and specifies the header fields, data fields, field sizes, scaling, representations, and data positions used within messages. The general structure of a SAE J1850 message frame without in-frame response is shown in Figure 1. The structure of a SAE J1850 message with in-frame response is shown in Figure 2. Figures 1 and 2 also show the scope of frame fields defined by this document for non-diagnostic messages. Refer to SAE J1979 for specifications of emissions related diagnostic message header and data fields. Refer to SAE J2190 for the definition of other diagnostic data fields. The description of the network interface hardware, basic protocol definition, electrical specifications, and the CRC byte are given in SAE J1850.
Standard

Class B Data Communication Network Messages - Part 2: Data Parameter Definitions

2011-04-01
CURRENT
J2178/2_201104
This SAE Recommended Practice defines the information contained in the header and data fields of non-diagnostic messages for automotive serial communications based on SAE J1850 Class B networks. This document describes and specifies the header fields, data fields, field sizes, scaling, representations, and data positions used within messages. The general structure of a SAE J1850 message frame without in-frame response is shown in Figure 1. The structure of a SAE J1850 message with in-frame response is shown in Figure 2. Figures 1 and 2 also show the scope of frame fields defined by this document for non-diagnostic messages. Refer to SAE J1979 for specifications of emissions related diagnostic message header and data fields. Refer to SAE J2190 for the definition of other diagnostic data fields. The description of the network interface hardware, basic protocol definition, electrical specifications, and the CRC byte are given in SAE J1850.
Standard

Class B Data Communication Network Messages - Detailed Header Formats and Physical Address Assignments

1992-06-01
HISTORICAL
J2178/1_199206
This SAE Recommended Practice defines the information contained in the header and data fields of non-diagnostic messages for automotive serial communications based on SAE J1850 Class B networks. This document describes and specifies the header fields, data fields, field sizes, scaling, representations, and data positions used within messages. The general structure of a SAE J1850 message frame without in-frame response is shown in Figure 1. The structure of a SAE J1850 message with in-frame response is shown in Figure 2. Figures 1 and 2 also show the scope of frame fields defined by this document for non-diagnostic messages. Refer to SAE J1979 for specifications of emissions related diagnostic message header and data fields. Refer to SAE J2190 for the definition of other diagnostic data fields. The description of the network interface hardware, basic protocol definition, the electrical specifications, and the CRC byte are given in SAE J1850.
Standard

Class B Data Communication Network Messages - Detailed Header Formats and Physical Address Assignments

2011-04-01
CURRENT
J2178/1_201104
This SAE Recommended Practice defines the information contained in the header and data fields of non-diagnostic messages for automotive serial communications based on SAE J1850 Class B networks. This document describes and specifies the header fields, data fields, field sizes, scaling, representations, and data positions used within messages. The general structure of a SAE J1850 message frame without in-frame response is shown in Figure 1. The structure of a SAE J1850 message with in-frame response is shown in Figure 2. Figures 1 and 2 also show the scope of frame fields defined by this document for non-diagnostic messages. Refer to SAE J1979 for specifications of emissions related diagnostic message header and data fields. Refer to SAE J2190 for the definition of other diagnostic data fields. The description of the network interface hardware, basic protocol definition, the electrical specifications, and the CRC byte are given in SAE J1850.
Standard

File Structures for a Node Capability File (NCF)

2010-01-07
CURRENT
J2602/3_201001
This document covers the requirements for SAE implementations based on LIN 2.0. Requirements stated in this document will provide a minimum standard level of performance to which all compatible systems, design and development tools, software, ECUs and media shall be designed. This will assure consistent and unambiguous serial data communication among all connected devices regardless of supplier. This document may be referenced by any vehicle OEM component technical specification that describes any given ECU in which the single wire data link controller and physical layer interface is located. The intended audience includes, but is not limited to, ECU suppliers, LIN controller suppliers, LIN transceiver suppliers, component release engineers and vehicle system engineers.
Standard

Class C Application Requirement Considerations

2000-02-17
CURRENT
J2056/1_200002
This SAE Recommended Practice will focus on the requirements of Class C applications. The requirements for these applications are different from those required for either Class A or Class B applications. An overall example is provided for consistency of discussion. Cancelled due to lack of interest.
Standard

Survey of Known Protocols

1993-04-01
HISTORICAL
J2056/2_199304
This SAE Information Report is a summary comparison of existing protocols found in manufacturing, automotive, aviation, military, and computer applications which provide background or may be applicable for Class C application. The intent of this report is to present a summary of each protocol, not an evaluation. This is not intended to be a comprehensive review of all applicable protocols. The form for evaluation of a protocol exists in this paper and new protocols can be submitted on this form to the committee for consideration in future revisions of this report. This report contains a table which provides a side-by-side comparison of each protocol considered. The subsequent section provides a more detailed examination of the protocol attributes. Many of the protocols do not specify a method for one or more of the criteria. In these circumstances 'under defined' or 'not specified' will appear under the heading.
Standard

Glossary of Vehicle Networks for Multiplexing and Data Communications

1991-06-01
HISTORICAL
J1213/1_199106
This document covers the general terms and corresponding definitions that support the design, development, implementation, testing, and application of vehicle networks. The terminology also covers some terms and concepts of distributed embedded systems, network hardware, network software, physical layers, protocols, and other related areas.
Standard

Class A Multiplexing Actuators

2001-08-30
HISTORICAL
J2057/2_200108
The Class A Task Force of the Vehicle Network for Multiplex and Data Communications Committee is publishing this SAE Information Report to provide insight into Class A Multiplexing. Multiplexed actuators are generally defined as devices which accept information from the multiplexed bus. A multiplexed actuator can be an output device controlled by the operator or an intelligent controller. A Multiplex actuator can also be a display device that reports the status of a monitored vehicle function. This document is intended to help the network system engineers and is meant to stimulate the design thought process. A list of multiplexed actuator examples is provided in Appendix A, Figure A1. Many other examples can be it identified.
Standard

Class B Data Communications Network Interface

1991-08-01
HISTORICAL
J1850_199108
This SAE Standard establishes the requirements for a Class B Data Communication Network Interface applicable to all On- and Off-Road Land-Based Vehicles. It defines a minimum set of data communication requirements such that the resulting network is cost effective for simple applications and flexible enough to use in complex applications. Taken in total, the requirements contained in this document specify a data communications network that satisfies the needs of automotive manufacturers. This specification describes two specific implementations of the network, based on media/Physical Layer differences. One Physical Layer is optimized for a data rate of 10.4 Kbps while the other Physical Layer is optimized for a data rate of 41.6 Kbps (see Appendix A for a checklist of application-specific features). The Physical Layer parameters are specified as they would be detected on the network media, not within any particular module or integrated circuit implementation.
X