Refine Your Search

Topic

Search Results

Standard

GLOSSARY OF VEHICLE NETWORKS FOR MULTIPLEXING AND DATA COMMUNICATIONS

1991-06-01
HISTORICAL
J1213/1_199106
This SAE Information Report provides definition for terms (words and phrases) which are generally used within the SAE in describing network and data communication issues. In many cases, these definitions are different from those of the same or similar terms found in nonautomotive organizations, such as the Institute of Electrical and Electronic Engineers (IEEE). The Vehicle Networks for Multiplexing and Data Communications committee has found it useful to collect these specific terms and definitions into this document so documents related to the multiplexing and data communications issues will not need an extensive definitions section. This document is intended to be the central reference for terms and definitions related to multiplexing and data communications and as such is intended to apply equally to Passenger Car, Truck and Bus, and Construction and Agriculture organizations within SAE.
Standard

Glossary of Automotive Electronic Terms

1978-06-01
CURRENT
J1213_197806
This glossary has been compiled to serve for reference in an effort to assist communications between the automotive engineer and the electronics engineer. This Glossary confines its content to the specific field of electronic systems and subsystems as they pertain to the automotive engineer.
Standard

TOKEN SLOT NETWORK FOR AUTOMOTIVE CONTROL

1996-10-01
HISTORICAL
J2106_199610
The Token Slot Data Link is intended to provide periodic, broadcast communications (communication that must occur on a regular, predetermined basis) within a vehicle system. The Token Slot protocol achieves this by implementing a masterless, deterministic, non-contention Token Slot sequence which is designed to offer a transmit token to all devices (or nodes) without requiring that they respond. After acquiring the token, messages may be sent and verified using a variety of built-in techniques. The token passing slot sequence is then reinitiated by the current token holder.
Standard

TOKEN SLOT NETWORK FOR AUTOMOTIVE CONTROL

1991-04-29
HISTORICAL
J2106_199104
The Token Slot Data Link is intended to provide periodic, broadcast communications (communication that must occur on a regular, predetermined basis) within a vehicle system. The Token Slot protocol achieves this by implementing a masterless, deterministic, non-contention Token Slot sequence which is designed to offer a transmit token to all devices (or nodes) without requiring that they respond. After acquiring the token, messages may be sent and verified using a variety of built-in techniques. The token passing slot sequence is then reinitiated by the current token holder.
Standard

Class A Multiplexing Actuators

2022-12-20
CURRENT
J2057/2_202212
The Class A Task Force of the Vehicle Network for Multiplex and Data Communications Committee is publishing this SAE Information Report to provide insight into Class A Multiplexing. Multiplexed actuators are generally defined as devices which accept information from the multiplexed bus. A multiplexed actuator can be an output device controlled by the operator or an intelligent controller. A Multiplex actuator can also be a display device that reports the status of a monitored vehicle function. This document is intended to help the network system engineers and is meant to stimulate the design thought process. A list of multiplexed actuator examples is provided in Appendix A, Figure A1. Many other examples can be it identified.
Standard

CLASS B DATA COMMUNICATION NETWORK MESSAGES PART 2: DATA PARAMETER DEFINITIONS

1993-06-01
HISTORICAL
J2178/2_199306
This SAE Recommended Practice defines the information contained in the header and data fields of non-diagnostic messages for automotive serial communications based on SAE J1850 Class B networks. This document describes and specifies the header fields, data fields, field sizes, scaling, representations, and data positions used within messages. The general structure of a SAE J1850 message frame without in-frame response is shown in Figure 1. The structure of a SAE J1850 message with in-frame response is shown in Figure 2. Figures 1 and 2 also show the scope of frame fields defined by this document for non-diagnostic messages. Refer to SAE J1979 for specifications of emissions-related diagnostic message header and data fields. Refer to SAE J2190 for the definition of other diagnostic data fields. The description of the network interface hardware, basic protocol definition, the electrical specifications, and the CRC byte are given in SAE J1850.
Standard

CLASS B DATA COMMUNICATION NETWORK MESSAGES—PART 2: DATA PARAMETER DEFINITIONS

1997-05-01
HISTORICAL
J2178/2_199705
This SAE Recommended Practice defines the information contained in the header and data fields of non-diagnostic messages for automotive serial communications based on SAE J1850 Class B networks. This document describes and specifies the header fields, data fields, field sizes, scaling, representations, and data positions used within messages. The general structure of a SAE J1850 message frame without in-frame response is shown in Figure 1. The structure of a SAE J1850 message with in-frame response is shown in Figure 2. Figures 1 and 2 also show the scope of frame fields defined by this document for non-diagnostic messages. Refer to SAE J1979 for specifications of emissions related diagnostic message header and data fields. Refer to SAE J2190 for the definition of other diagnostic data fields. The description of the network interface hardware, basic protocol definition, electrical specifications, and the CRC byte are given in SAE J1850.
Standard

Class B Data Communication Network Messages - Part 2: Data Parameter Definitions

2011-04-01
CURRENT
J2178/2_201104
This SAE Recommended Practice defines the information contained in the header and data fields of non-diagnostic messages for automotive serial communications based on SAE J1850 Class B networks. This document describes and specifies the header fields, data fields, field sizes, scaling, representations, and data positions used within messages. The general structure of a SAE J1850 message frame without in-frame response is shown in Figure 1. The structure of a SAE J1850 message with in-frame response is shown in Figure 2. Figures 1 and 2 also show the scope of frame fields defined by this document for non-diagnostic messages. Refer to SAE J1979 for specifications of emissions related diagnostic message header and data fields. Refer to SAE J2190 for the definition of other diagnostic data fields. The description of the network interface hardware, basic protocol definition, electrical specifications, and the CRC byte are given in SAE J1850.
Standard

Class B Data Communication Network Messages—Part 2: Data Parameter Definitions

1999-03-11
HISTORICAL
J2178/2_199903
This SAE Recommended Practice defines the information contained in the header and data fields of non-diagnostic messages for automotive serial communications based on SAE J1850 Class B networks. This document describes and specifies the header fields, data fields, field sizes, scaling, representations, and data positions used within messages. The general structure of a SAE J1850 message frame without in-frame response is shown in Figure 1. The structure of a SAE J1850 message with in-frame response is shown in Figure 2. Figures 1 and 2 also show the scope of frame fields defined by this document for non-diagnostic messages. Refer to SAE J1979 for specifications of emissions related diagnostic message header and data fields. Refer to SAE J2190 for the definition of other diagnostic data fields. The description of the network interface hardware, basic protocol definition, electrical specifications, and the CRC byte are given in SAE J1850.
Standard

Class B Data Communication Network Messages—Part 2: Data Parameter Definitions

2004-07-27
HISTORICAL
J2178/2_200407
This SAE Recommended Practice defines the information contained in the header and data fields of non-diagnostic messages for automotive serial communications based on SAE J1850 Class B networks. This document describes and specifies the header fields, data fields, field sizes, scaling, representations, and data positions used within messages. The general structure of a SAE J1850 message frame without in-frame response is shown in Figure 1. The structure of a SAE J1850 message with in-frame response is shown in Figure 2. Figures 1 and 2 also show the scope of frame fields defined by this document for non-diagnostic messages. Refer to SAE J1979 for specifications of emissions related diagnostic message header and data fields. Refer to SAE J2190 for the definition of other diagnostic data fields. The description of the network interface hardware, basic protocol definition, electrical specifications, and the CRC byte are given in SAE J1850.
Standard

Class B Data Communication Network Messages - Part 3 - Frame IDs for Single-Byte Forms of Headers

2011-05-02
CURRENT
J2178/3_201105
This SAE Recommended Practice defines the information contained in the header and data fields of non-diagnostic messages for automotive serial communications based on SAE J1850 Class B networks. This document describes and specifies the header fields, data fields, field sizes, scaling, representations, and data positions used within messages. The general structure of a SAE J1850 message frame without in-frame response is shown in Figure 1. The structure of a SAE J1850 message with in-frame response is shown in Figure 2. Figures 1 and 2 also show the scope of frame fields defined by this document for non-diagnostic messages. Refer to SAE J1979 for specifications of emissions related diagnostic message header and data fields. Refer to SAE J2190 for the definition of other diagnostic data fields. The description of the network interface hardware, basic protocol definition, electrical specifications, and the CRC byte is given in SAE J1850.
Standard

Class B Data Communication Network Messages - Message Definitions for Three Byte Headers

2011-04-01
CURRENT
J2178/4_201104
This SAE Recommended Practice defines the information contained in the header and data fields of non-diagnostic messages for automotive serial communications based on SAE J1850 Class B networks. This document describes and specifies the header fields, data fields, field sizes, scaling, representations, and data positions used within messages. The general structure of a SAE J1850 message frame without in-frame response is shown in Figure 1. The structure of a SAE J1850 message with in-frame response is shown in Figure 2. Figures 1 and 2 also show the scope of frame fields defined by this document for non-diagnostic messages. Refer to SAE J1979 for specifications of emissions related diagnostic message header and data fields. Refer to SAE J2190 for the definition of other diagnostic data fields. The description of the network interface hardware, basic protocol definition, the electrical specifications, and the CRC byte are given in SAE J1850.
Standard

Class B Data Communication Network Messages—Message Definitions for Three Byte Headers

1999-03-11
HISTORICAL
J2178/4_199903
This SAE Recommended Practice defines the information contained in the header and data fields of non-diagnostic messages for automotive serial communications based on SAE J1850 Class B networks. This document describes and specifies the header fields, data fields, field sizes, scaling, representations, and data positions used within messages. The general structure of a SAE J1850 message frame without in-frame response is shown in Figure 1. The structure of a SAE J1850 message with in-frame response is shown in Figure 2. Figures 1 and 2 also show the scope of frame fields defined by this document for non-diagnostic messages. Refer to SAE J1979 for specifications of emissions related diagnostic message header and data fields. Refer to SAE J2190 for the definition of other diagnostic data fields. The description of the network interface hardware, basic protocol definition, the electrical specifications, and the CRC byte are given in SAE J1850.
Standard

Class B Data Communication Network Messages—Message Definitions for Three Byte Headers

2004-07-27
HISTORICAL
J2178/4_200407
This SAE Recommended Practice defines the information contained in the header and data fields of non-diagnostic messages for automotive serial communications based on SAE J1850 Class B networks. This document describes and specifies the header fields, data fields, field sizes, scaling, representations, and data positions used within messages. The general structure of a SAE J1850 message frame without in-frame response is shown in Figure 1. The structure of a SAE J1850 message with in-frame response is shown in Figure 2. Figures 1 and 2 also show the scope of frame fields defined by this document for non-diagnostic messages. Refer to SAE J1979 for specifications of emissions related diagnostic message header and data fields. Refer to SAE J2190 for the definition of other diagnostic data fields. The description of the network interface hardware, basic protocol definition, the electrical specifications, and the CRC byte are given in SAE J1850.
Standard

CLASS B DATA COMMUNICATION NETWORK MESSAGES—MESSAGE DEFINITIONS FOR THREE BYTE HEADERS

1995-02-01
HISTORICAL
J2178/4_199502
This SAE Recommended Practice defines the information contained in the header and data fields of non-diagnostic messages for automotive serial communications based on SAE J1850 Class B networks. This document describes and specifies the header fields, data fields, field sizes, scaling, representations, and data positions used within messages. The general structure of a SAE J1850 message frame without in-frame response is shown in Figure 1. The structure of a SAE J1850 message with in-frame response is shown in Figure 2. Figures 1 and 2 also show the scope of frame fields defined by this document for non-diagnostic messages. Refer to SAE J1979 for specifications of emissions related diagnostic message header and data fields. Refer to SAE J2190 for the definition of other diagnostic data fields. The description of the network interface hardware, basic protocol definition, the electrical specifications, and the CRC byte are given in SAE J1850.
Standard

Class B Data Communication Network Messages - Detailed Header Formats and Physical Address Assignments

2011-04-01
CURRENT
J2178/1_201104
This SAE Recommended Practice defines the information contained in the header and data fields of non-diagnostic messages for automotive serial communications based on SAE J1850 Class B networks. This document describes and specifies the header fields, data fields, field sizes, scaling, representations, and data positions used within messages. The general structure of a SAE J1850 message frame without in-frame response is shown in Figure 1. The structure of a SAE J1850 message with in-frame response is shown in Figure 2. Figures 1 and 2 also show the scope of frame fields defined by this document for non-diagnostic messages. Refer to SAE J1979 for specifications of emissions related diagnostic message header and data fields. Refer to SAE J2190 for the definition of other diagnostic data fields. The description of the network interface hardware, basic protocol definition, the electrical specifications, and the CRC byte are given in SAE J1850.
Standard

High Speed CAN (HSC) for Vehicle Applications at 125 Kbps

2002-03-07
HISTORICAL
J2284/1_200203
This document will define the Physical Layer and portions of the Data Link Layer of the ISO model for a 125 Kbps High Speed CAN (HSC) protocol implementation. Both ECU and media design requirements for networks will be specified. Requirements will primarily address the CAN physical layer implementation. Requirements will focus on a minimum standard level of performance from the High Speed CAN (HSC) implementation. All ECUs and media shall be designed to meet certain component level requirements in order to ensure the HSC implementation system level performance at 125 Kbps. The minimum performance level shall be specified by system level performance requirements or characteristics described in detail in Section 6 of this document. This document is designed such that if the Electronic Control Unit requirements defined in Section 6 are met, then the system level attributes should be obtainable. This document will address only requirements which may be tested at the ECU and media level.
Standard

High Speed CAN (HSC) for Vehicle Applications at 125 kbps

2016-11-21
HISTORICAL
J2284/1_201611
This SAE Recommended Practice will define the Physical Layer and portions of the Data Link Layer of the Open Systems Interconnection model (ISO 7498) for a 125 kbps High Speed CAN (HSC) protocol implementation. Both ECU and media design requirements for networks will be specified. Requirements will primarily address the CAN physical layer implementation. Requirements will focus on a minimum standard level of performance from the High Speed CAN (HSC) implementation. All ECUs and media shall be designed to meet certain component level requirements in order to ensure the HSC implementation system level performance at 125 kbps. The minimum performance level shall be specified by system level performance requirements or characteristics described in detail in Section 5 of this document. This document is designed such that if the Electronic Control Unit requirements defined in Section 6 are met, then the system level attributes should be obtainable.
Standard

High Speed CAN (HSC) for Vehicle Applications at 250 Kbps

2002-03-07
HISTORICAL
J2284/2_200203
This document will define the Physical Layer and portions of the Data Link Layer of the ISO model for a 250 Kbps High Speed CAN (HSC) protocol implementation. Both ECU and media design requirements for networks will be specified. Requirements will primarily address the CAN physical layer implementation. Requirements will focus on a minimum standard level of performance from the High Speed CAN (HSC) implementation. All ECUs and media shall be designed to meet certain component level requirements in order to ensure the HSC implementation system level performance at 250 Kbps. The minimum performance level shall be specified by system level performance requirements or characteristics described in detail in Section 6 of this document. This document is designed such that if the Electronic Control Unit requirements defined in Section 6 are met, then the system level attributes should be obtainable. This document will address only requirements which may be tested at the ECU and media level.
X