Refine Your Search

Topic

Search Results

Standard

Bluetooth™ Wireless Protocol for Automotive Applications

2001-12-31
HISTORICAL
J2561_200112
This SAE Information Report defines the functionality of typical Bluetooth applications used for remotely accessing in-vehicle automotive installations of electronic devices. Remote access may be achieved directly with on-board Bluetooth modules, or indirectly via a custom designed gateway that communicates with Bluetooth and non-Bluetooth modules alike. Access to the vehicle, in the form of two-way communications, may be made via a single master port, or via multiple ports on the vehicle. The Bluetooth technology may also be used in conjunction with other types of off-board wireless technology. This report recommends using a message strategy that is already defined in one or more of the documents listed in 2.1.1, 2.1.4, 2.1.5, and 2.1.6. Those strategies may be used for some of the typical remote communications with a vehicle. It is recognized, however, that there may be specific applications requiring a unique message strategy or structure.
Standard

Bluetooth™ Wireless Protocol for Automotive Applications

2016-11-08
CURRENT
J2561_201611
This SAE Information Report defines the functionality of typical Bluetooth applications used for remotely accessing in-vehicle automotive installations of electronic devices. Remote access may be achieved directly with on-board Bluetooth modules, or indirectly via a custom designed gateway that communicates with Bluetooth and non-Bluetooth modules alike. Access to the vehicle, in the form of two-way communications, may be made via a single master port, or via multiple ports on the vehicle. The Bluetooth technology may also be used in conjunction with other types of off-board wireless technology. This report recommends using a message strategy that is already defined in one or more of the documents listed in 2.1.1, 2.1.4, 2.1.5, and 2.1.6. Those strategies may be used for some of the typical remote communications with a vehicle. It is recognized, however, that there may be specific applications requiring a unique message strategy or structure.
Standard

GLOSSARY OF VEHICLE NETWORKS FOR MULTIPLEXING AND DATA COMMUNICATIONS

1991-06-01
HISTORICAL
J1213/1_199106
This SAE Information Report provides definition for terms (words and phrases) which are generally used within the SAE in describing network and data communication issues. In many cases, these definitions are different from those of the same or similar terms found in nonautomotive organizations, such as the Institute of Electrical and Electronic Engineers (IEEE). The Vehicle Networks for Multiplexing and Data Communications committee has found it useful to collect these specific terms and definitions into this document so documents related to the multiplexing and data communications issues will not need an extensive definitions section. This document is intended to be the central reference for terms and definitions related to multiplexing and data communications and as such is intended to apply equally to Passenger Car, Truck and Bus, and Construction and Agriculture organizations within SAE.
Standard

Class A Multiplexing Sensors

2022-12-20
CURRENT
J2057/3_202212
The Class A Task Force of the Vehicle Network for Multiplexing and Data Communications Subcommittee is providing information on sensors that could be applicable for a Class A Bus application. Sensors are generally defined as any device that inputs information onto the bus. Sensors can be an input controlled by the operator or an input that provides the feedback or status of a monitored vehicle function. Although there is a list of sensors provided, this list is not all-inclusive. This SAE Information Report is intended to help the network system engineer and is meant to stimulate the design thought process.
Standard

Class B Data Communication Network Messages - Part 3 - Frame IDs for Single-Byte Forms of Headers

2011-05-02
CURRENT
J2178/3_201105
This SAE Recommended Practice defines the information contained in the header and data fields of non-diagnostic messages for automotive serial communications based on SAE J1850 Class B networks. This document describes and specifies the header fields, data fields, field sizes, scaling, representations, and data positions used within messages. The general structure of a SAE J1850 message frame without in-frame response is shown in Figure 1. The structure of a SAE J1850 message with in-frame response is shown in Figure 2. Figures 1 and 2 also show the scope of frame fields defined by this document for non-diagnostic messages. Refer to SAE J1979 for specifications of emissions related diagnostic message header and data fields. Refer to SAE J2190 for the definition of other diagnostic data fields. The description of the network interface hardware, basic protocol definition, electrical specifications, and the CRC byte is given in SAE J1850.
Standard

Class B Data Communication Network Messages - Message Definitions for Three Byte Headers

2011-04-01
CURRENT
J2178/4_201104
This SAE Recommended Practice defines the information contained in the header and data fields of non-diagnostic messages for automotive serial communications based on SAE J1850 Class B networks. This document describes and specifies the header fields, data fields, field sizes, scaling, representations, and data positions used within messages. The general structure of a SAE J1850 message frame without in-frame response is shown in Figure 1. The structure of a SAE J1850 message with in-frame response is shown in Figure 2. Figures 1 and 2 also show the scope of frame fields defined by this document for non-diagnostic messages. Refer to SAE J1979 for specifications of emissions related diagnostic message header and data fields. Refer to SAE J2190 for the definition of other diagnostic data fields. The description of the network interface hardware, basic protocol definition, the electrical specifications, and the CRC byte are given in SAE J1850.
Standard

Selection of Transmission Media

2022-12-20
CURRENT
J2056/3_202212
This SAE Information Report studies the present transmission media axioms and takes a fresh look at the Class C transmission medium requirements and also the possibilities and limitations of using a twisted pair as the transmission medium. The choice of transmission medium is a large determining factor in choosing a Class C scheme.
Standard

Class A Application/Definition

2022-12-20
CURRENT
J2057/1_202212
This SAE Information Report will explain the differences between Class A, B, and C networks and clarify through examples, the differences in applications. Special attention will be given to a listing of functions that could be attached to a Class A communications network.
Standard

Class B Data Communication Network Messages - Detailed Header Formats and Physical Address Assignments

2011-04-01
CURRENT
J2178/1_201104
This SAE Recommended Practice defines the information contained in the header and data fields of non-diagnostic messages for automotive serial communications based on SAE J1850 Class B networks. This document describes and specifies the header fields, data fields, field sizes, scaling, representations, and data positions used within messages. The general structure of a SAE J1850 message frame without in-frame response is shown in Figure 1. The structure of a SAE J1850 message with in-frame response is shown in Figure 2. Figures 1 and 2 also show the scope of frame fields defined by this document for non-diagnostic messages. Refer to SAE J1979 for specifications of emissions related diagnostic message header and data fields. Refer to SAE J2190 for the definition of other diagnostic data fields. The description of the network interface hardware, basic protocol definition, the electrical specifications, and the CRC byte are given in SAE J1850.
Standard

High Speed CAN (HSC) for Vehicle Applications at 125 kbps

2016-11-21
HISTORICAL
J2284/1_201611
This SAE Recommended Practice will define the Physical Layer and portions of the Data Link Layer of the Open Systems Interconnection model (ISO 7498) for a 125 kbps High Speed CAN (HSC) protocol implementation. Both ECU and media design requirements for networks will be specified. Requirements will primarily address the CAN physical layer implementation. Requirements will focus on a minimum standard level of performance from the High Speed CAN (HSC) implementation. All ECUs and media shall be designed to meet certain component level requirements in order to ensure the HSC implementation system level performance at 125 kbps. The minimum performance level shall be specified by system level performance requirements or characteristics described in detail in Section 5 of this document. This document is designed such that if the Electronic Control Unit requirements defined in Section 6 are met, then the system level attributes should be obtainable.
Standard

High Speed CAN (HSC) for Vehicle Applications at 250 kbps

2016-11-22
HISTORICAL
J2284/2_201611
This SAE Recommended Practice will define the Physical Layer and portions of the Data Link Layer of the Open Systems Interconnection model (ISO 7498) for a 250 kbps High Speed CAN (HSC) protocol implementation. Both ECU and media design requirements for networks will be specified. Requirements will primarily address the CAN physical layer implementation. Requirements will focus on a minimum standard level of performance from the High Speed CAN (HSC) implementation. All ECUs and media shall be designed to meet certain component level requirements in order to ensure the HSC implementation system level performance at 250 kbps. The minimum performance level shall be specified by system level performance requirements or characteristics described in detail in Section 5 of this document. This document is designed such that if the Electronic Control Unit (ECU) requirements defined in Section 6 are met, then the system level attributes should be obtainable.
Standard

Chrysler Sensor and Control (CSC) Bus Multiplexing Network for Class 'A' Applications

2002-07-25
CURRENT
J2058_200207
THE CSC Bus components defined herein were developed to provide simple, yet reliable, communication between a host master module and its sensors and actuators. The scheme chosen provides the ability to communicate in both polling mode and direct addressing modes. Vehicle Architecture for Data Communication Standards Committee voted to cancel document - 7/19/2002 J2058 and J2106 Rationale Per Jack Volk, Vice Chairperson of Vehicle Architecture for Data Communication Standards Committee, document not being used. Information may be contained in other documents, (not necessarily SAE documents).
Standard

High-Speed CAN (HSC) for Vehicle Applications at 500 kbps with CAN FD Data at 5 Mbps

2022-11-02
CURRENT
J2284/5_202211
This SAE Recommended Practice will define the physical layer and portions of the data link layer of the open systems interconnection model (ISO 7498) for a 500 kbps arbitration bus with CAN FD data at 5 Mbps high-speed CAN (HSC) protocol implementation. Both ECU and media design requirements for networks will be specified. Requirements will primarily address the CAN physical layer implementation. Requirements will focus on a minimum standard level of performance from the High-Speed CAN (HSC) implementation. All ECUs and media shall be designed to meet certain component level requirements in order to ensure the HSC implementation system level performance at 500 kbps arbitration bus with CAN FD Data at 5 Mbps. The minimum performance level shall be specified by system level performance requirements or characteristics described in detail in Section 6 of this document.
Standard

High-Speed CAN (HSC) for Vehicle Applications at 500 kbps with CAN FD Data at 5 Mbps

2016-09-09
HISTORICAL
J2284/5_201609
This SAE Recommended Practice will define the Physical Layer and portions of the Data Link Layer of the Open Systems Interconnection model (ISO 7498) for a 500 kbps arbitration bus with CAN FD Data at 5 Mbps High-Speed CAN (HSC) protocol implementation. Both ECU and media design requirements for networks will be specified. Requirements will primarily address the CAN physical layer implementation. Requirements will focus on a minimum standard level of performance from the High-Speed CAN (HSC) implementation. All ECUs and media shall be designed to meet certain component level requirements in order to ensure the HSC implementation system level performance at 500 kbps arbitration bus with CAN FD Data at 5 Mbps. The minimum performance level shall be specified by system level performance requirements or characteristics described in detail in Section 6 of this document.
Standard

LIN Network for Vehicle Applications

2012-11-19
HISTORICAL
J2602/1_201211
This document covers the requirements for SAE implementations based on LIN 2.0. Requirements stated in this document will provide a minimum standard level of performance to which all compatible ECUs and media shall be designed. This will assure full serial data communication among all connected devices regardless of supplier. The goal of SAE J2602-1 is to improve the interoperability and interchangeability of LIN devices within a network by resolving those LIN 2.0 requirements that are ambiguous, conflicting, or optional. Moreover, SAE J2602-1 provides additional requirements that are not present in LIN 2.0 (e.g., fault tolerant operation, network topology, etc.). This document is to be referenced by the particular vehicle OEM component technical specification that describes any given ECU in which the single wire data link controller and physical layer interface is located. Primarily, the performance of the physical layer is specified in this document.
Standard

LIN Network for Vehicle Applications

2021-10-01
CURRENT
J2602-1_202110
This document covers the requirements for SAE implementations based on ISO 17987:2016. Requirements stated in this document will provide a minimum standard level of performance to which all compatible ECUs and media shall be designed. This will assure full serial data communication among all connected devices regardless of supplier. The goal of SAE J2602-1 is to improve the interoperability and interchangeability of LIN devices within a network by adding additional requirements that are not present in ISO 17987:2016 (e.g., fault tolerant operation, network topology, etc.). The intended audience includes, but is not limited to, ECU suppliers, LIN controller suppliers, LIN transceiver suppliers, component release engineers, and vehicle system engineers. The term “master” has been replaced by “commander” and term “slave” with “responder” in the following sections.
Standard

High-Speed CAN (HSC) for Vehicle Applications at 500 kbps with CAN FD Data at 2 Mbps

2016-06-16
HISTORICAL
J2284/4_201606
This SAE Recommended Practice will define the Physical Layer and portions of the Data Link Layer of the Open Systems Interconnection model (ISO 7498) for a 500 kbps arbitration bus with CAN FD Data at 2 Mbps High-Speed CAN (HSC) protocol implementation. Both ECU and media design requirements for networks will be specified. Requirements will primarily address the CAN physical layer implementation. Requirements will focus on a minimum standard level of performance from the HSC implementation. All ECUs and media shall be designed to meet certain component level requirements in order to ensure the HSC implementation system level performance at 500 kbps arbitration bus with CAN FD Data at 2 Mbps. The minimum performance level shall be specified by system level performance requirements or characteristics described in detail in Section 6 of this document.
Standard

Single Wire CAN Network for Vehicle Applications

2000-02-14
CURRENT
J2411_200002
This SAE Recommended Practice defines the Physical Layer and portions of the Data Link Layer of the OSI model for data communications. In particular, this document specifies the physical layer requirements for any Carrier Sense Multiple Access/Collision Resolution (CSMA/CR) data link which operates on a single wire medium to communicate among Electronic Control Units (ECU) on road vehicles. Requirements stated in this document will provide a minimum standard level of performance to which all compatible ECUs and media shall be designed. This will assure full serial data communication among all connected devices regardless of supplier. This document is to be referenced by the particular vehicle OEM Component Technical Specification which describes any given ECU in which the single wire data link controller and physical layer interface is located. Primarily, the performance of the physical layer is specified in this document.
X