Refine Your Search

Search Results

Viewing 1 to 7 of 7
Technical Paper

Simulator Study of Heavy Truck Air Disc Brake Effectiveness During Emergency Braking

2008-04-14
2008-01-1498
In crashes between heavy trucks and light vehicles, most of the fatalities are the occupants of the light vehicle. A reduction in heavy truck stopping distance should lead to a reduction in the number of crashes, the severity of crashes, and consequently the numbers of fatalities and injuries. This study made use of the National Advanced Driving Simulator (NADS). NADS is a full immersion driving simulator used to study driver behavior as well as driver-vehicle reactions and responses. The vehicle dynamics model of the existing heavy truck on NADS had been modified with the creation of two additional brake models. The first was a modified S-cam (larger drums and shoes) and the second was an air-actuated disc brake system. A sample of 108 CDL-licensed drivers was split evenly among the simulations using each of the three braking systems. The drivers were presented with four different emergency stopping situations.
Technical Paper

Results from NHTSA's Experimental Examination of Selected Maneuvers that may Induce On-Road Untripped, Light Vehicle Rollover

2001-03-05
2001-01-0131
This paper summarizes the results of test maneuvers devised to measure on-road, untripped, rollover propensity. Complete findings from this research are contained in [1]. Twelve test vehicles, representing a wide range of vehicle types and classes were used. Three vehicles from each of four categories: passenger cars, light trucks, vans, and sport utility vehicles, were tested. The vehicles were tested with vehicle characterization and untripped rollover propensity maneuvers. The vehicle characterization maneuvers were designed to determine fundamental vehicle handling properties while the untripped rollover propensity maneuvers were designed to produce two-wheel lift for vehicles with relatively higher rollover propensity potential. The vehicle characterization maneuvers were Pulse Steer, Sinusoidal Sweep, Slowly Increasing Steer, and Slowly Increasing Speed. The rollover propensity maneuvers were J-Turn, J-Turn with Pulse Braking, Fishhook #1 and #2, and Resonant Steer.
Technical Paper

Hardware Evaluation of Heavy Truck Side and Rear Object Detection Systems

1995-02-01
951010
This paper focuses on two types of electronics-based object detection systems for heavy truck applications: those sensing the presence of objects to the rear of the vehicle, and those sensing the presence of objects on the right side of the vehicle. The rearward sensing systems are intended to aid drivers when backing their vehicles, typically at very low “crawl” speeds. Six rear object detection systems that were commercially available at the time that this study was initiated were evaluated. The right side looking systems are intended primarily as supplements to side view mirror systems and as an aid for detecting the presence of adjacent vehicles when making lane changes or merging maneuvers. Four side systems, two commercially available systems and two prototypes, were evaluated.
Technical Paper

Human Performance Evaluation of Heavy Truck Side Object Detection Systems

1995-02-01
951011
Side object detection systems (SODS) are collision warning systems which alert drivers to the presence of traffic alongside their vehicle within defined detection zones. The intent of SODS is to reduce collisions during lane changes and merging maneuvers. This study examined the effect of right SODS on the performance of commercial vehicle drivers as a means of assessing the impact of these systems on safety. In this study, eight professional truck drivers drove a tractor-semitrailer equipped with four different sets of SODS hardware or side view mirror configurations. These subjects had no previous experience with SODS. Subjects were tested with two right SODS (a radar-based system and an ultrasonic-based system), a fender-mounted convex mirror, and, for comparison, standard side view mirrors only. For each case, subjects drove the test vehicle through a set route for one day.
Technical Paper

Modeling of a 6×4 Tractor and Trailers for Use in Real Time Hardware in the Loop Simulation for ESC Testing

2013-04-08
2013-01-0693
According to NHTSA's 2011 Traffic Safety Facts [1], passenger vehicle occupant fatalities continued the strong decline that has been occurring recently. In 2011, there were 21,253 passenger vehicles fatalities compared to 22,273 in 2010, and that was a 4.6% decrease. However; large-truck occupant fatalities increased from 530 in 2010 to 635 in 2011, which is a 20% increase. This was a second consecutive year in which large truck fatalities have increased (9% increase from 2009 to 2010). There was also a 15% increase in large truck occupant injuries from 2010. Moreover, the fatal crashes involving large trucks increased by 1.9%, in contrast to other-vehicle-occupant fatalities that declined by 3.6% from 2010. The 2010 accident statistics NHTSA's report reveals that large trucks have a fatal accident involvement rate of 1.22 vehicles per 100 million vehicle miles traveled compared to 1.53 for light trucks and 1.18 for passenger cars.
Technical Paper

The Design of a Suspension Parameter Measurement Device

1987-02-01
870576
This paper describes the theory and design of an apparatus, the Suspension Parameter Measurement Device (SPMD), which has been developed to measure the displacements and forces which occur at the road wheels of a vehicle as the body moves, or as lateral and/or longitudinal forces are applied at the tire/road interface. Wheel movements resulting from the bounce, pitch, or roll motions of the vehicle body in the absence of lateral and longitudinal forces at the tire/road interface are the kinematic characteristics of the suspension. Wheel displacements caused by the application of forces in the plane of the road are defined as the compliance characteristics, while those resulting from motions of the steering wheel are the steering characteristics. The purpose of the SPMD is to measure all of these characteristics, thereby providing data for use in the simulation of the performance of cars and light trucks.
Technical Paper

An Overview of the National Highway Traffic Safety Administration’s Light Vehicle Antilock Brake Systems Research Program

1999-03-01
1999-01-1286
This paper presents an overview of currently ongoing research by the National Highway Traffic Safety Administration (NHTSA) in the area of light vehicle (passenger cars and light trucks) Antilock Brake Systems (ABS). This paper serves as a lead-in to other papers that will be presented during this session. Several statistical crash data studies have found there to be little or no net safety benefit from the implementation of four-wheel ABS on passenger automobiles. Typically, these studies have found ABS to be associated with: 1. A statistically significant decrease in multi-vehicle crashes. 2. A statistically significant decrease in fatal pedestrian strikes. 3. A statistically significant increase in single-vehicle road departure crashes. The safety disbenefit due to the third finding approximately cancels the safety benefits from the first two findings.
X