Refine Your Search

Topic

Search Results

Technical Paper

Assessing the Loss Mechanisms Associated with Engine Downsizing, Boosting and Compression Ratio Change

2013-04-08
2013-01-0929
The loss mechanisms associated with engine downsizing, boosting and compression ratio change are assessed. Of interest are the extents of friction loss, pumping loss, and crevice loss. The latter does not scale proportionally with engine size. These losses are deconstructed via a cycle simulation model which encompasses a friction model and a crevice loss model for engine displacement of 300 to 500 cc per cylinder. Boost pressure is adjusted to yield constant torque. The compression ratio is varied from 8 to 20. Under part load, moderate speed condition (1600 rpm; 13.4 Nm/cylinder brake torque), the pumping work reduces significantly with downsizing while the work loss associated with the crevice volume increases. At full load (1600 rpm; 43.6 Nm/cylinder brake torque), the pumping work is less significant. The crevice loss (normalized to the fuel energy) is essentially the same as in the part load case. The sensitivities of the respective loss terms to downsizing are reported.
Journal Article

On the Nature of Particulate Emissions from DISI Engines at Cold-Fast-Idle

2014-04-01
2014-01-1368
Particulate emissions from a production gasoline direct injection spark ignition engine were studied under a typical cold-fast-idle condition (1200 rpm, 2 bar NIMEP). The particle number (PN) density in the 22 to 365 nm range was measured as a function of the injection timing with single pulse injection and with split injection. Very low PN emissions were observed when injection took place in the mid intake stroke because of the fast fuel evaporation and mixing processes which were facilitated by the high turbulent kinetic energy created by the intake charge motion. Under these conditions, substantial liquid fuel film formation on the combustion chamber surfaces was avoided. PN emissions increased when injection took place in the compression stroke, and increased substantially when the fuel spray hit the piston.
Journal Article

Effect of Operation Strategy on First Cycle CO, HC, and PM/PN Emissions in a GDI Engine

2015-04-14
2015-01-0887
The impact of the operating strategy on emissions from the first combustion cycle during cranking was studied quantitatively in a production gasoline direct injection engine. A single injection early in the compression cycle after IVC gives the best tradeoff between HC, particulate mass (PM) and number (PN) emissions and net indicated effective pressure (NIMEP). Retarding the spark timing, it does not materially affect the HC emissions, but lowers the PM/PN emissions substantially. Increasing the injection pressure (at constant fuel mass) increases the NIMEP but also the PM/PN emissions.
Journal Article

Effects of Secondary Air on the Exhaust Oxidation of Particulate Matters

2015-04-14
2015-01-0886
The effects of secondary air on the exhaust oxidation of particulate matters (PM) have been assessed in a direct-injection-spark-ignition engine under fuel rich fast idle condition (1200 rpm; 2 bar NIMEP). Substantial oxidation of the unburned feed gas species (CO and HC) and significant reduction of both the particulate number (up to ∼80%) and volume (up to ∼90%) have been observed. The PM oxidation is attributed to the reactions between the PM and the radicals generated in the oxidation of the feed gas unburned species. This hypothesis is supported by the observation that the reduction in PM volume is proportional to the amount of heat release in the secondary oxidation.
Technical Paper

Influence of Intake Port Charge-Motion-Control-Valve on Mixture Preparation in a Port-Fuel-Injection Engine

2007-10-29
2007-01-4013
The effects of the directed port flow produced by a Charge-Motion-Control-Valve (CMCV) on mixture preparation in a Port-Fuel-Injection engine were assessed under conditions typical of fast idle in a cold start process. The port fuel was found to comprise two components: a “valve” puddle (at the vicinity of the valve) that built up quickly, and that was mainly responsible for the delivery of the fuel to the cylinder charge; a “port” puddle located significantly upstream. The latter was mainly created by the reverse back flow process and built up slowly. Although the fuel amounts in these two components were roughly the same, the latter did not significantly interact with the fuel transport to the cylinder charge. The CMCV only weakly affected the purging or filling time of the valve puddle, hence the dynamics of the fuel delivery process was not materially affected.
Technical Paper

On HCCI Engine Knock

2007-07-23
2007-01-1858
Knock in a HCCI engine was examined by comparing subjective evaluation, recorded sound radiation from the engine, and cylinder pressure. Because HCCI combustion involved simultaneous heat release in a spatially large region, substantial oscillations were often found in the pressure signal. The time development of the audible signal within a knock cycle was different from that of the pressure trace. Thus the audible signal was not the attenuated transmission of the cylinder pressure oscillation but the sound radiation from the engine structure vibration excited by the initial few cycles of pressure oscillation. A practical knock limited maximum load point for the specific 2.3 L I4 engine under test (and arguably for engines of similar size and geometry) was defined at when the maximum rate of cycle-averaged pressure rise reached 5 MPa/ms.
Technical Paper

Effect of Fuel Properties on First Cycle Fuel Delivery in a SI Engine

2004-10-25
2004-01-3057
The fuel property effects on first cycle mixture preparation were assessed by measuring the in-cylinder fuel equivalence ratio (Φ) with a Fast Flame Ionization Detector (FFID) using four different fuels. The Engine Coolant Temperature (ECT) was varied between -6°C and 80°C. The Φ values increased with both ECT and amount of injected fuel mass. The delivery fraction (fraction of the injected fuel that went into the combustible charge), however, increased with ECT but decreased with increase in injected fuel. The minimum required injected mass to produce a combustible mixture increased sharply with decrease in ECT below 20°C. There was, however, no single fuel parameter that would correlate with the measurements over the entire temperature range. Instead, the minimum required injected mass correlated to different distillation points on the ASTM distillation curve; e.g. at ECT of -6°C, it correlated to T20; at 40°C, it correlated to T50.
Technical Paper

Effect of Intake Cam Phasing on First Cycle Fuel Delivery and HC Emissions in an SI Engine

2004-06-08
2004-01-1852
A strategy to facilitate the mixture preparation process in PFI engines is to delay the Intake Valve Opening (IVO) by shifting the cam phasing so that the cylinder pressure is sub-atmospheric when the valve opens. The physics of the effect are discussed in terms of the pressure differential between the manifold and the cylinder, and the resulting flow and charge temperature history. The effect was evaluated by measuring the equivalence ratio of the trapped charge and the exhaust HC emissions in the first cycle of cranking in a 2.4L engine. When the IVO timing was changed from 18° BTDC to 21° ATDC, the in-cylinder fuel equivalence ratio increased by approximately 10%. This increase was attributed mainly to the enrichment of the charge by displacing the leaner mixture at the top of the cylinder in the period between BDC and IVC. The exhaust HC, however, increased by 40%. No conclusive explanation was established for this increase in HC emissions.
Technical Paper

Design and Demonstration of a Spark Ignition Engine Operating in a Stratified-EGR Mode

1998-02-23
980122
This paper describes the development of a spark ignition engine operating in a stratified-EGR mode at part load. The concept is to reduce the pumping loss with high levels of EGR while maintaining stable combustion via charge stratification. Since the engine operates stoichiometrically, the ability to control NOx emissions by the three-way catalyst is retained. The configuration of introducing the stoichiometric fresh mixture to the center portion of the combustion chamber with the EGR gas on the two sides is visualized in a transparent engine using planar laser-induced fluorescence (PLIF) and Mie scattering. Visualization results showed that the stratification between air/fuel mixture and EGR gas was relatively well established during the intake stroke. There was, however, significant mixing in the late part of the compression stroke.
Technical Paper

Mixture Preparation and Hydrocarbon Emissions Behaviors in the First Cycle of SI Engine Cranking

2002-10-21
2002-01-2805
The mixture preparation and hydrocarbon (HC) emissions behaviors for a single-cylinder port-fuel-injection SI engine were examined in an engine/dynamometer set up that simulated the first cycle of cranking. The engine was motored continuously at a fixed low speed with the ignition on, and fuel was injected every 8 cycles. Unlike the real engine cranking process, the set up provided a well controlled and repeatable environment to study the cranking process. The parameters were the Engine Coolant Temperature (ECT), speed, and the fuel injection pulse width. The in-cylinder and exhaust HC were measured simultaneously with two Fast-response Flame Ionization Detectors. A large amount of injected fuel (an order of magnitude larger than the normal amount that would produce a stoichiometric mixture in a warm-up engine) was required to form a combustible mixture at low temperatures.
Technical Paper

Spark Ignition Engine Hydrocarbon Emissions Behaviors in Stopping and Restarting

2002-10-21
2002-01-2804
Engine Hydrocarbon (HC) emissions behaviors in the shut down and re-start processes were examined in a production 4-cylinder 2.4 L engine. Depending on when the power to the ECU was cut off relative to the engine events, there could be two or three mis-fired cylinders (i.e. cylinders with fuel injected but no ignition). The total HC pumped out by the engine into the catalyst in the stopping process was ∼ 4 mg (approximately equaled to the amount of one injection at idle condition). Because the size of the catalyst was larger than the total exhaust volume in the stopping process, this HC was not observed at the catalyst exit. The catalyst temperature was also not affected. When the engine was purged after shut down (by cranking the engine with the injectors and ignition disconnected), the total exit HC was 33 mg. In a restart 90 minutes after shut down, the integrated amount of HC emissions due to residual fuel from the stopping process was 16 mg.
Journal Article

Cycle-by-Cycle Analysis of Cold Crank-Start in a GDI Engine

2016-04-05
2016-01-0824
The first 3 cycles in the cold crank-start process at 20°C are studied in a GDI engine. The focus is on the dependence of the HC and PM/PN emissions of each cycle on the injection strategy and combustion phasing of the current and previous cycles. The PM/PN emissions per cycle decrease by more than an order of magnitude as the crank-start progresses from the 1st to the 3rd cycle, while the HC emissions stay relatively constant. The wall heat transfer, as controlled by the combustion phasing, during the previous cycles has a more significant influence on the mixture formation process for the current cycle than the amount of residual fuel. The results show that the rise in HC emissions caused by the injection spray interacting with the intake valves and piston crown is reduced as the cranking process progresses. Combustion phasing retard significantly reduces the PM emission. The HC emissions, however, are relatively not sensitive to combustion phasing in the range of interest.
Journal Article

Reduction of Cold-Start Emissions through Valve Timing in a GDI Engine

2016-04-05
2016-01-0827
This work examines the effect of valve timing during cold crank-start and cold fast-idle (1200 rpm, 2 bar NIMEP) on the emissions of hydrocarbons (HC) and particulate mass and number (PM/PN). Four different cam-phaser configurations are studied in detail: 1. Baseline stock valve timing. 2. Late intake opening/closing. 3. Early exhaust opening/closing. 4. Late intake phasing combined with early exhaust phasing. Delaying the intake valve opening improves the mixture formation process and results in more than 25% reduction of the HC and of the PM/PN emissions during cold crank-start. Early exhaust valve phasing results in a deterioration of the HC and PM/PN emissions performance during cold crank-start. Nevertheless, early exhaust valve phasing slightly improves the HC emissions and substantially reduces the particulate emissions at cold fast-idle.
Technical Paper

Throttle Movement Rate Effects on Transient Fuel Compensation in a Port-Fuel-Injected SI Engine

2000-06-19
2000-01-1937
Throttle ramp rate effects on the in-cylinder fuel/air (F/A) excursion was studied in a production engine. The fuel delivered to the cylinder per cycle was measured in-cylinder by a Fast Response Flame Ionization detector. Intake pressure was ramped from 0.4 to 0.9 bar. Under slow ramp rates (∼1 s ramp time), the Engine Electronic Control (EEC) unit provided the correct compensation for delivering a stoichiometric mixture to the cylinder throughout the transient. At fast ramp rates (a fraction of a second ramps), a lean spike followed by a rich one were observed. Based on the actual fuel injected in each cycle during the transient, a x-τ model using a single set of x and τ values reproduced the cycle-to-cycle in-cylinder F/A response for all the throttle ramp rates.
Technical Paper

Fuel Metering Effects on Hydrocarbon Emissions and Engine Stability During Cranking and Start-up in a Port Fuel Injected Spark Ignition Engine

2000-10-16
2000-01-2836
A cycle by cycle analysis of engine behavior during the first few cycles of cranking and start-up was performed on a production four-cylinder engine. Experiments were performed to elucidate the effects of initial engine position (rest position after last engine shut-down), first and second cycle fueling, engine temperature, and spark timing on fuel delivery to the cylinder, engine-out Hydrocarbon (EOHC) emissions, and Gross Indicated Mean Effective Pressure (IMEPg). The most important effect of the piston starting position is on the first firing cycle engine rpm, which influences the IMEPg through combustion phasing. Because of the low rpm values for the first cycle, combustion is usually too advanced with typical production engine ignition timing. For both the hot start and the ambient start, the threshold for firing is at an in-cylinder air equivalence ratio (λ) of 1.1.
Technical Paper

Effects of Highly-Heated Fuel on Diesel Combustion

1985-02-01
850088
The effects of highly heated fuel on diesel combustion were studied experimentally in a rapid compression machine. A pure fuel, dodecane, heated up to and beyond its critical temperature, was injected into a diesel combustion chamber with the air charge at a compression ratio of 18.2 to 1. The ignition delay was found to decrease with the increase of fuel temperature. The delay decreased to almost zero (within the limit of the accuracy of the instrumentation) at fuel temperatures above 600K. This decrease of delay was explained in terms of a thermal ignition model. For the short ignition delay combustions, the premixed burning phase could not be detected from the heat release data. The mixing controlled burning phases of the heated and unheated fuels however, were not much different; in particular, there was no rapid mixing phenomenon when the fuel temperature was above critical.
Technical Paper

In-Cylinder Measurements of Residual Gas Concentration in a Spark Ignition Engine

1990-02-01
900485
The residual gas fraction prior to ignition at the vicinity of the spark plug in a single cylinder, two-valve spark ignition engine was measured with a fast-response flame ionization hydrocarbon detector. The technique in using such an instrument is reported. The measurements were made as a function of the intake manifold pressure, engine speed and intake/exhaust valve-overlap duration. Both the mean level of the residual fraction and the statistics of the cycle-to-cycle variations were obtained.
Technical Paper

On the Time Delay in Continuous In-Cylinder Sampling From IC Engines

1989-02-01
890579
When gas sample is continuously drawn from the cylinder of an internal combustion engine, the sample that appears at the end of the sampling system corresponds to the in-cylinder content sometime ago because of the finite transit time which is a function of the cylinder pressure history. This variable delay causes a dispersion of the sample signal and makes the interpretation of the signal difficult An unsteady flow analysis of a typical sampling system was carried out for selected engine loads and speeds. For typical engine operation, a window in which the delay is approximately constant may be found. This window gets smaller with increase in engine speed, with decrease in load, and with the increase in exit pressure of the sampling system.
Technical Paper

An Adaptive Air/Fuel Ratio Controller for SI Engine Throttle Transients

1999-03-01
1999-01-0552
An adaptive air/fuel ratio controller for SI engine throttle transient was developed. The scheme is based on an event- based, single- parameter fuel dynamics model. A least- square- error algorithm with an active forgetting factor was used for parameter identifications. A one- step- look- ahead controller was designed to maintain the desired air/fuel ratio by canceling the fuel dynamics with the controller setting updated adaptively according to the identified parameters. When implemented on a Ford Ztech engine and tested under a set of throttle- transient operations, the adaptive controller learned quickly and performed well.
Technical Paper

Fuel Effects on Throttle Transients in PFI Spark Ignition Engines

1997-05-01
971613
The fuel effects on throttle transients in PFI spark ignition engines were assessed through experiments with simultaneous step change of the throttle position from part load to WOT and increment of the injected fuel amount. The test matrix consisted of various gasoline/methanol blends from pure gasoline to pure methanol, coolant temperatures at 40C (for cold engine condition) and 80C (for warm engine), and different levels of fuel enrichment at the WOT condition. The x-τ model was used to interpret the engine GIMEP response in the transient. Using the model, a procedure was developed to calculate the parameters of the transient from the data. These parameters were systematically regressed against the fuel distillation points, the increment in injected fuel mass in the transient, and the enthalpy required to evaporate the fuel increment as the explanatory variables.
X