Refine Your Search

Search Results

Viewing 1 to 10 of 10
Technical Paper

A Species-Based Multi-Component Volatility Model for Gasoline

A fuel volatility model based on the major species present in the fuel has been formulated. The model accurately predicts the ASTM distillation curves and Reid Vapor Pressure for hydrocarbon fuels. The model may be used to assess the fuel effects on the extent of evaporation and the vapor composition in the mixture preparation process.
Technical Paper

On the Time Delay in Continuous In-Cylinder Sampling From IC Engines

When gas sample is continuously drawn from the cylinder of an internal combustion engine, the sample that appears at the end of the sampling system corresponds to the in-cylinder content sometime ago because of the finite transit time which is a function of the cylinder pressure history. This variable delay causes a dispersion of the sample signal and makes the interpretation of the signal difficult An unsteady flow analysis of a typical sampling system was carried out for selected engine loads and speeds. For typical engine operation, a window in which the delay is approximately constant may be found. This window gets smaller with increase in engine speed, with decrease in load, and with the increase in exit pressure of the sampling system.
Technical Paper

The Nature of Heat Release in Gasoline PPCI Engines

The heat release characteristics in terms of the maximum pressure rise rate (MPRR) and combustion phasing in a partially premixed compression ignition (PPCI) engine are studied using a calibration gasoline. Early port fuel injection provides a nearly homogeneous charge, into which a secondary fuel pulse is added via direct injection (DI) to provide stratification which is affected by the timing of the start of injection (SOI). As the SOI the DI fuel is retarded from early compression, MPRR first decreases, then increases substantially, and decreases again. The MPRR correlates mostly with the combustion phasing. The SOI timing plays an indirect role. The observation is explained by a bulk heat release process of which the rate increases with temperature rather than by a sequential ignition process. Observations from compression ignition of representative homogeneous charges in a Rapid Compression Machine support this explanation.
Technical Paper

The Anatomy of Knock

The combustion process after auto-ignition is investigated. Depending on the non-uniformity of the end gas, auto-ignition could initiate a flame, produce pressure waves that excite the engine structure (acoustic knock), or result in detonation (normal or developing). For the “acoustic knock” mode, a knock intensity (KI) is defined as the pressure oscillation amplitude. The KI values over different cycles under a fixed operating condition are observed to have a log-normal distribution. When the operating condition is changed (over different values of λ, EGR, and spark timing), the mean (μ) of log (KI/GIMEP) decreases linearly with the correlation-based ignition delay calculated using the knock-point end gas condition of the mean cycle. The standard deviation σ of log(KI/GIMEP) is approximately a constant, at 0.63. The values of μ and σ thus allow a statistical description of knock from the deterministic calculation of the ignition delay using the mean cycle properties
Technical Paper

Ignition Delay Correlation for Engine Operating with Lean and with Rich Fuel-Air Mixtures

An ignition delay correlation encompassing the effects of temperature, pressure, residual gas, EGR, and lambda (on both the rich and lean sides) has been developed. The procedure uses the individual knocking cycle data from a boosted direct injection SI engine (GM LNF) operating at 1250 to 2000 rpm, 8-14 bar GIMEP, EGR of 0 to 12.5%, and lambda of 0.8 to 1.3 with a certification fuel (Haltermann 437, with RON=96.6 and MON=88.5). An algorithm has been devised to identify the knock point on individual pressure traces so that the large data set (of some thirty three thousand cycles) could be processed automatically. For lean and for rich operations, the role of the excess fuel, air, and recycled gas (which has excess air in the lean case, and hydrogen and carbon monoxide in the rich case) may be treated effectively as diluents in the ignition delay expression.
Technical Paper

On HCCI Engine Knock

Knock in a HCCI engine was examined by comparing subjective evaluation, recorded sound radiation from the engine, and cylinder pressure. Because HCCI combustion involved simultaneous heat release in a spatially large region, substantial oscillations were often found in the pressure signal. The time development of the audible signal within a knock cycle was different from that of the pressure trace. Thus the audible signal was not the attenuated transmission of the cylinder pressure oscillation but the sound radiation from the engine structure vibration excited by the initial few cycles of pressure oscillation. A practical knock limited maximum load point for the specific 2.3 L I4 engine under test (and arguably for engines of similar size and geometry) was defined at when the maximum rate of cycle-averaged pressure rise reached 5 MPa/ms.
Technical Paper

Effect of Intake Cam Phasing on First Cycle Fuel Delivery and HC Emissions in an SI Engine

A strategy to facilitate the mixture preparation process in PFI engines is to delay the Intake Valve Opening (IVO) by shifting the cam phasing so that the cylinder pressure is sub-atmospheric when the valve opens. The physics of the effect are discussed in terms of the pressure differential between the manifold and the cylinder, and the resulting flow and charge temperature history. The effect was evaluated by measuring the equivalence ratio of the trapped charge and the exhaust HC emissions in the first cycle of cranking in a 2.4L engine. When the IVO timing was changed from 18° BTDC to 21° ATDC, the in-cylinder fuel equivalence ratio increased by approximately 10%. This increase was attributed mainly to the enrichment of the charge by displacing the leaner mixture at the top of the cylinder in the period between BDC and IVC. The exhaust HC, however, increased by 40%. No conclusive explanation was established for this increase in HC emissions.
Journal Article

Understanding Knock Metric for Controlled Auto-Ignition Engines

The knock metric for controlled auto-ignition (CAI) engines is assessed by considering the physical processes that establish the pressure wave that contributes to the acoustic radiation of the engine, and by analyzing pressure data from a CAI engine. Data sets from the engine operating with port fuel injection, early direct injection and late direct injection are used to monitor the effect of mixture composition stratification. Thermodynamic analysis shows that the local pressure rise produced by heat release has to be discounted by the work spent in acoustic expansion against the ambient pressure to properly predict the pressure wave amplitude. Based on this analysis, a modified correlation between the pressure wave amplitude and the maximum pressure rise rate (MPRR) is developed by introducing an MPRR offset to account for the expansion work.
Journal Article

Effect of Operation Strategy on First Cycle CO, HC, and PM/PN Emissions in a GDI Engine

The impact of the operating strategy on emissions from the first combustion cycle during cranking was studied quantitatively in a production gasoline direct injection engine. A single injection early in the compression cycle after IVC gives the best tradeoff between HC, particulate mass (PM) and number (PN) emissions and net indicated effective pressure (NIMEP). Retarding the spark timing, it does not materially affect the HC emissions, but lowers the PM/PN emissions substantially. Increasing the injection pressure (at constant fuel mass) increases the NIMEP but also the PM/PN emissions.
Journal Article

The Effects of Charge Motion and Laminar Flame Speed on Late Robust Combustion in a Spark-Ignition Engine

The effects of charge motion and laminar flame speeds on combustion and exhaust temperature have been studied by using an air jet in the intake flow to produce an adjustable swirl or tumble motion, and by replacing the nitrogen in the intake air by argon or CO₂, thereby increasing or decreasing the laminar flame speed. The objective is to examine the "Late Robust Combustion" concept: whether there are opportunities for producing a high exhaust temperature using retarded combustion to facilitate catalyst warm-up, while at the same time, keeping an acceptable cycle-to-cycle torque variation as measured by the coefficient of variation (COV) of the net indicated mean effective pressure (NIMEP). The operating condition of interest is at the fast idle period of a cold start with engine speed at 1400 RPM and NIMEP at 2.6 bar. A fast burn could be produced by appropriate charge motion. The combustion phasing is primarily a function of the spark timing.