Refine Your Search

Topic

Search Results

Journal Article

Boiling Coolant Vapor Fraction Analysis for Cooling the Hydraulic Retarder

2015-04-14
2015-01-1611
The hydraulic retarder is the most stabilized auxiliary braking system [1-2] of heavy-duty vehicles. When the hydraulic retarder is working during auxiliary braking, all of the braking energy is transferred into the thermal energy of the transmission medium of the working wheel. Theoretically, the residual heat-sinking capability of the engine could be used to cool down the transmission medium of the hydraulic retarder, in order to ensure the proper functioning of the hydraulic retarder. Never the less, the hydraulic retarder is always placed at the tailing head of the gearbox, far from the engine, long cooling circuits, which increases the risky leakage risk of the transmission medium. What's more, the development trend of heavy load and high speed vehicle directs the significant increase in the thermal load of the hydraulic retarder, which even higher than the engine power.
Technical Paper

Research on Objective Drivability Evaluation with Multi-Source Information Fusion for Passenger Car

2020-04-14
2020-01-1044
The drivability plays an important role for marketability and competitiveness of passenger car in meeting some customer requirements, which directly affects the driving experience and the desire of purchasing. In this paper, a framework of objective drivability evaluation with multi-source information fusion for passenger car is proposed. At first, according to vehicle powertrain system and optimization theory, certain vehicle performances, which are closely related to objective drivability are analyzed, including vehicle longitudinal acceleration, vehicle speed, engine torque, engine speed, gear position, accelerator pedal, brake signal and voltage signal. Then, combined with the evaluation criterion of signal-to-noise ratio (SNR), mean error (ME), root mean squared error (RMSE) and signal smoothness (SS), a de-noising method is developed for the drivability evaluation information.
Technical Paper

A Novel Velocity Planner for Autonomous Vehicle Considering Human Driver’s Habits

2020-04-14
2020-01-0133
In automatic driving application, the velocity planner can be considered as a key factor to ensure the safety and comfort. One of the most important tasks of the velocity planner is to simulate the velocity characteristics of human drivers. In this paper, two Driver In-the-Loop (DIL) experiments are designed to explain velocity characteristics of human drivers. In the first experiment, static obstacles are placed on both sides of the straight road to shorten the cross range that vehicles can driver across. Moreover, different cross ranges are set to study the influence of the steering wheel error. In the second experiment, velocity characteristics are investigated under the condition of different road widths and curvatures in a U-turn road contour. In both tests, different drivers’ preview behavior is analyzed through the operation of throttle, braking, and steering.
Journal Article

Cooperative Optimization of Vehicle Ride Comfort and Handling Stability by Integrated Control Strategy

2012-04-16
2012-01-0247
Vehicle needs suspension and steering systems with different features to fit different driving conditions. In normal straight driving condition, soft suspension and heavy steering systems are needed to achieve better ride comfort and straight line driving stability; in turning conditions, hard suspension and lightweight steering systems are needed to get better handing stability. The semi-active suspension system with Magneto-Rheological dampers can improve the ride comfort and handling performance of vehicle. Electrical power steering system is developed rapidly due to its portable and flexible operations as well as stable steering performance.
Technical Paper

Fuzzy Control of Semi-active Air Suspension for Cab Based on Genetic Algorithms

2008-10-07
2008-01-2681
Semi-active suspension has been widely applied in commercial vehicle suspension in order to get good riding comfortableness. Fuzzy logic control (FLC) has been widely applied in the field of kinetic control because control rule of FLC is easy to understand. But the gain of fuzzy rules and adjustment of membership functions usually depend on experts' experiences and repeated experiments, thus the fuzzy rules and membership functions has strong subjectivity, also are easily affected by environment of experiments, so the main problem of fuzzy logic controller design is selection and optimization of fuzzy rules and membership functions. Genetic Algorithms (GA) is the algorithm that searches the optimal solution through simulating natural evolutionary process and is one of the evolution algorithms which have most extensive impact.
Technical Paper

Power Capability Testing of a Lithium-ion Battery Using Hardware in the Loop

2010-04-12
2010-01-1073
The energy storage system (ESS) is the key enabler to hybrid electric vehicles (HEVs) that offer improved fuel economy and reduced vehicle emissions. The power capability of a battery has significant impact on the fuel economy of HEVs. This paper presents the power capability testing of a lithium-ion battery with a conventional metal oxide cathode using the hardware in the loop (HIL) at a wide range of charge/discharge conditions and at different temperatures. The achieved test results provide critical data of battery power characteristics and effectively accelerate the development of battery power prediction algorithm.
Technical Paper

Development of a Novel Device to Improve Urea Evaporation, Mixing and Distribution to Enhance SCR Performance

2010-04-12
2010-01-1185
A novel urea evaporation and mixing device has been developed to improve the overall performance of a urea-SCR system. The device was tested with a MY2007 Cummins ISB 6.7L diesel engine equipped with an SCR aftertreatment system. Test results show that the device effectively improved the overall NO conversion efficiency of the SCR catalyst over both steady-state and transient engine operating conditions, while NH₃ slip from the catalyst decreased.
Technical Paper

Heavy Truck Driveline Components Modeling and Thermal Analyzing

2009-10-06
2009-01-2905
In heavy truck driveline system, the components often include clutch, transmission, transfer case, drive shaft, etc. A fluid torque converter could be equipped in front of the transmission in order to improve the starting performance. Meanwhile, a hydraulic retarder could be introduced for auxiliary braking so as to adapt the truck to the brake on long downgrade in mountainous regions. Thus, the driveline heat load would have a notable increase. Both the fluid torque converter and the hydraulic retarder would produce a large quantity of heat, and a special cooling system is needed for adjusting the transmission fluid temperature with which the gains are potentially very large [1]. The heat load for driveline is often calculated based on empirical formula. For the heavy truck, however, if the heat value is underestimated, driveline components would suffer from overheated damage.
Technical Paper

Co-simulation Based Hydraulic Retarder Braking Control System

2009-10-06
2009-01-2907
Hydraulic retarder has been widely applied on military vehicles and heavy commercial vehicles because of it could provide great brake torque and has lasting working time [1]. In order to reduce driver's frequent actions in braking process and prevent hydraulic retarder system from overheating, it is need to apply constant braking torque control, this control target has a strict requirement to hydraulic control system design. Many parameters often require repeated test to determine, which increases the R&D cost and extends the research cycle. This paper tries to find a time-efficient research method of hydraulic retarder control system through studying on a heavy military vehicle hydraulic retarder system. Hydraulic retarder model is set up through test data. The hydraulic control system is built based on AMESim. Controller model is set up based on PID control. The whole vehicle brake model is built based on MATLAB/Simulink.
Technical Paper

Kinematics Analysis and Optimization Design of Semi-active Suspension for a Light Bus

2011-04-12
2011-01-0090
In this paper, a Magneto-Rheological (MR) fluid semi-active suspension system was tested on a commercial vehicle, a domestic light bus, to determine the performance improvements compared to passive suspensions. MR fluid is a material that responds to an applied magnetic field with a significant change in its rheological behavior. When the magnetic field is applied, the properties of such a fluid can change from a free-flowing, low viscosity fluid to a near solid, and this change in properties takes place in a few milliseconds and is fully reversible. A quarter suspension test rig was built out to test the nonlinear performance of MR damper. Based on a large number of experimental data, a phenomenological model of MR damper based on the Bouc-Wen hysteresis model was adopted to predict both the force-displacement behavior and the complex nonlinear force-velocity response.
Technical Paper

Energy Saving Analysis of Vehicle Hydraulic Retarder Thermal Management System Based on Rankine Cycle

2016-09-18
2016-01-1941
Vehicle hydraulic retarders are applied in heavy-duty trucks and buses as an auxiliary braking device. In traditional cooling systems of hydraulic retarders, the working fluid is introduced into the heat exchanger to transfer heat to the cooling liquid in circulation, whose heat is then dissipated by the engine cooling system. This prevents the waste heat of the working fluid from being used effectively. In hydraulic retarder cooling system based on the Organic Rankine Cycle, the organic working fluid first transfers heat with the hydraulic retarder working fluid in Rankine cycle, and then outputs power through expansion machine. It can both reduce heat load of the engine cooling system, and enhance thermal stability of the hydraulic retarder while recovering and utilizing braking energy. First of all, according to the target vehicle model, hydraulic retarder cooling system model based on Rankine cycle is established.
Technical Paper

Study on Commercial Vehicle ECR Thermal Management System

2016-09-18
2016-01-1935
With the continuous increasing requirements of commercial vehicle weight and speed on highway transportation, conventional friction brake is difficult to meet the braking performance. To ensure the driving safety of the vehicle in the hilly region, the eddy current retarder (ECR) has been widely used due to its fast response, lower prices and convenient installation. ECR brakes the vehicle through the electromagnetic force generated by the current, and converted vehicle mechanical energy into heat through magnetic field. Air cooling structure is often used in the traditional ECR and cooling performance is limited, which causes low braking torque, thermal recession, and low reliability and so on. The water jacket has been equipped outside the eddy current region in this study, and the electric ECR is cooled through the water circulating in the circuit, which prolongs its working time.
Technical Paper

Driving Path Planning System under Vehicular Active Safety Constraint

2016-09-27
2016-01-8105
Path planning system, which is one of driver assistance systems, can calculate the driving paths and estimate the driving time through the road information provided by information source. Traditional path planning systems calculate the driving paths through Dijsktra's algorithm or A* algorithm but only consider the road information from electronic maps. It is not safe enough for operating vehicles because of the insufficient information of vehicle performance as well as the driver's willingness. This study is based on the Dijsktra's algorithm, which comprehensively considered vehicular active safety constraints such as road information, vehicle performance and the driver's willingness to optimize the Dijsktra's algorithm. Then the path planning system can calculate the optimal driving paths that would satisfy the safety requirement of the vehicle. This study used LabVIEW as a visual host computer and MATLAB to calculate dynamic property of the vehicle.
Technical Paper

Vehicle Stability Criterion Research Based on Phase Plane Method

2017-03-28
2017-01-1560
In this paper, a novel method is proposed to establish the vehicle yaw stability criterion based on the sideslip angle-yaw rate (β-r) phase plane method. First, nonlinear two degrees of freedom vehicle analysis model is established by adopting the Magic Formula of nonlinear tire model. Then, according to the model in the Matlab/Simulink environment, the β-r phase plane is gained. Emphatically, the effects of different driving conditions (front wheels steering angle, road adhesion coefficient and speed) on the stability boundaries of the phase plane are analyzed. Through a large number of simulation analysis, results show that there are two types of phase plane: curve stability region and diamond stability region, and the judgment method of the vehicle stability domain type under different driving conditions is solved.
Technical Paper

Precise Steering Angle Control of Lane Change Assist System

2017-09-23
2017-01-2002
After obtaining the optimal trajectory through the lane change decision and trajectory planning, the last key technology for the automatic lane change assist system is to carry out the precise and rapid steering actuation according to the front wheel angle demand. Therefore, an automatic lane change system model including a BLDCM (brushless DC motor) model, a steering system model and a vehicle dynamics model is first established in this paper. Electromagnetic characteristics of the motor, the moment of the inertia and viscous friction etc. are considered in these models. Then, a SMC (Sliding Mode Control) algorithm for the steering system is designed to follow the steering angle input. The control torque of the steering motor is obtained through the system model according to steering angle demand. After that, the control current is calculated considering of electromagnetic characteristics of the BLDCM. Debugging and optimization of the control algorithm are done through simulations.
Technical Paper

Dynamic Modeling and State Estimation for Multi-In-Wheel-Motor-Driven Intelligent Vehicle

2017-09-23
2017-01-1996
Dynamic modeling and state estimation are significant in the trajectory tracking and stability control of the intelligent vehicle. In order to meet the requirement of the stability control of the eight-in-wheel-motor-driven intelligent vehicle, a full vehicle dynamics model with 12 degrees of freedom, including the longitudinal, lateral, yaw and roll motion of the body, and rotational motion of 8 wheels, is established for the research of the intelligent vehicle in this paper. By simulation with MATLAB/SIMULINK and by comparison with the TruckSim software, the reliability and practicality of the dynamics model are verified. Based on the established dynamics model, an extended Kalman filter (EKF) state observer is proposed to estimate the vehicle sideslip angle, roll angle and yaw rate, which are the key parameters to the stability control of the intelligent vehicle.
Technical Paper

Study on the Effects of Magnetic Field on Magnetorheological Fluid Hydraulic Retarder Braking Torque

2017-09-17
2017-01-2503
In order to ensure driving safety, heavy vehicles are often equipped with hydraulic retarder, which provides sustained, stable braking torque and converts the vehicle kinetic energy into heat taken away by the cooling system when traveling on a long downhill. The conventional hydraulic retarder braking torque is modulated by adjusting the liquid filling rate, which leads to slow response and difficult control. In this paper, a new kind of magnetorheological (MR) fluid hydraulic retarder is designed by replacing the traditional transmission oil with MR fluid and arranging the excitation coils outside the working chamber. The braking torque can be controlled by the fluid viscosity of MR fluid with the variation of magnetic field. Compared with the traditional hydraulic retarder, the system has the advantages of fast response, easy control and high adjustment sensitivity.
Technical Paper

Development of New I3 1.0L Turbocharged DI Gasoline Engine

2017-10-08
2017-01-2424
In recent years, more attentions have been paid to stringent legislations on fuel consumption and emissions. Turbocharged downsized gasoline direct injection (DI) engines are playing an increasing important role in OEM’s powertrain strategies and engine product portfolio. Dongfeng Motor (DFM) has developed a new 1.0 liter 3-cylinder Turbocharged gasoline DI (TGDI) engine (hereinafter referred to as C10TD) to meet the requirements of China 4th stage fuel consumption regulations and the China 6 emission standards. In this paper, the concept of the C10TD engine is explained to meet the powerful performance (torque 190Nm/1500-4500rpm and power 95kW/5500rpm), excellent part-load BSFC and NVH targets to ensure the drivers could enjoy the powerful output in quiet and comfortable environment without concerns about the fuel cost and pollution.
Technical Paper

A Nonlinear Dynamic Control Design with Conditional Integrators Applied to Unmanned Skid-steering Vehicle

2017-03-28
2017-01-1585
A dynamic controller is designed for unmanned skid-steering vehicle. The vehicle speed is controlled through driving torque of engine to achieve the desired vehicle speed and the steering is controlled through hydraulic braking on each side of the vehicle to achieve the desired yaw rate. Contrary to the common approaches by considering non-holonomic constraints, tire slip and saturation of actuators torque influencing the driving and braking are considered, based on the analysis of vehicle dynamic model and nonlinear tire model. Hence, with conditional integrators, the dynamic controller overcoming integral saturation is designed to ensure the accurate tracking for desired signals under influence of tire forces and constraint of actuators. In addition, the exponential kind filter is utilized to enhance the ability of smoothing noise of wheel speed. To perform small radius cornering maneuvers, a dynamic control strategy for steering when vehicle speed is zero is also designed.
Technical Paper

Simulation Study on Vehicle Road Performance with Hydraulic Electromagnetic Energy-Regenerative Shock Absorber

2016-04-05
2016-01-1550
This paper presents a novel application of hydraulic electromagnetic energy-regenerative shock absorber (HESA) into commercial vehicle suspension system and vehicle road performance are simulated by the evaluating indexes (e.g. root-mean-square values of vertical acceleration of sprung mass, dynamic tire-ground contact force, suspension deflection and harvested power; maximum values of pitch angle and roll angle). Firstly, the configuration and working principle of HESA are introduced. Then, the damping characteristics of HESA and the seven-degrees-of-freedom vehicle dynamics were modeled respectively before deriving the dynamic characteristics of a vehicle equipped with HESA. The control current is fixed at 7A to match the similar damping effect of traditional damper on the basis of energy conversion method of nonlinear shock absorber.
X